Дефектоскопия труб в процессе производства. Дефектоскопия на проведение закрытого конкурса по выбору сервисной компании на оказание услуг по проведению дефектоскопии и ремонту бурильных труб

Выбор по производителю

Не выбрано Компьютерная радиография DUERR NDT / DÜRR NDT АКС Синтез НДТ Proceq SA НПЦ Кропус Константа Центр МЕТ Bosello High Technology SaluTron® Messtechnik GmbH ЗИО "ПОЛАРИС" НПП «Промприбор» ЭЛИТЕСТ Промтест Bruker ТОЧПРИБОР FUTURE-TECH CORP. OXFORD Instruments Амкро Ньюком-НДТ Sonotron NDT YXLON International Array Corporation Raycraft General Electric Vidar systems corporation ООО «Арсенал НК» Echo Graphic НПП "Машпроект"

Дефектоскопия труб

11.10.2016

Дефектоскопия труб - одна из подкатегорий неразрушающего ультразвукового контроля , наряду с дефектоскопией основного металла и швов. Данный метод дефектоскопии - один из самых востребованных услуг для контроля нефте- и газопроводов во многих отраслях промышленности: химической, нефтегазовой, топливной, электроэнергетической и др.

В процессе длительной эксплуатации, равно как и в производстве, трубопроводы подвергаются внутреннему и внешнему воздействию, в ходе которых могут накапливаться различные дефекты (коррозионные повреждения, усталостные трещины, нарушения целостности металла, неметаллические включения, закаты, плены, раковины и др.). Очень важным является своевременное обнаружение таких дефектов до выхода трубопровода из строя. Еще более важным является возможность проведения диагностики без остановки или вывода системы из эксплуатации. Именно поэтому для дефектоскопии труб используются методы неразрушающего контроля, среди них магнитные (магнитной анизотропии, магнитной памяти металла, магнитной проницаемости), акустические (импульсные ультразвуковые, волн Лэмба, фазовые, акустической эмиссии), электрические и оптические (визуальные - эндоскопические, лазерные, голографические).

Такие методы применяются для выявления различных дефектов: нарушения герметичности, контроля напряженного состояния, контроля качества и состояния сварных соединений, контроля протечек и других параметров, ответственных за эксплуатационную надежность трубопроводов.

Среди методик проведения дефектоскопии трубопроводов можно выделить толщинометрию тела трубы и ультразвуковое исследование тела и концов трубы для выявления дефектов продольной и поперечной ориентации.

Основные методы неразрушающего контроля:

Магнитный метод применяется для инспекции изделий из ферромагнитных материалов, которые под воздействием внешнего магнитного поля существенно меняют свои магнитные характеристики.

Вихретоковый — основан на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых возбуждающей катушкой в электропроводящем объекте контроля.

Ультразвуковой метод представляет собой излучение импульсов ультразвуковых колебаний преобразователями. Они принимают и регистрируют сигналы, отраженные от внутренней и внешней поверхностей трубопровода и от образовавшихся дефектов.

Оборудование для дефектоскопического контроля трубопроводов

Основными методами контроля качества сварки, применяемыми при строительстве газонефтепроводов, являются визуально-измерительный, радиографический (работает по принципу рентгенографии и гаммаграфии), ультразвуковой (ручной или автоматизированный). Обследование проводится рентгеновским кроулером. Он представляет собой небольшую тележку с электрическим приводом, несущим панорамную рентгеновскую трубку и аккумуляторную батарею.

Оператор управляет передвижением батареи при помощи ручного пульта. Для диагностики магистральных трубопроводов обычно применяют дефектоскопические аппараты, состоящие из одного или нескольких соединенных между собой модулей, каждый из которых выполняет определенные функции, например, транспортировку аккумуляторных батарей, аппаратуры используемого физического метода, регистрирующей аппаратуры и т.п.

Для перемещения дефектоскопического аппарата внутри трубопровода обычно используется энергия текучей по нему среды (нефти, газа, конденсата и т.д.). При этом на модулях аппарата устанавливаются резиновые (или из другого упругого материала) кольца, перекрывающие поперечные сечения трубопровода между корпусами модулей и внутренней поверхностью трубопровода.

Тем самым они воспринимают давление текучей среды и способствуют непрерывному движению аппарата по трубопроводу. Существует аппарат для магнитной инспекции трубопроводов из ферромагнитных материалов. Корпуса модулей аппарата представляют собой жесткие цилиндрические оболочки из немагнитного материала, соосные с трубопроводом и имеющие диаметр приблизительно в два раза меньший.

На этих оболочках установлены по окружности их поперечных сечений постоянные магниты, которые образуют со стенкой трубопровода в каждом сечении единые магнитные контуры, путем соединения магнитов со стенкой трубопровода множеством проволочных или фольговых упругих металлических элементов. Известен также аппарат, предназначенный для обнаружения дефектов типа коррозионных язв.

Он оборудован одним или несколькими ультразвуковыми генераторами излучения с плоским волновым фронтом, направленным к внутренней стенке трубопровода. Анализ времени задержки отраженного от стенки сигнала выявляет наличие коррозионных повреждений на внутренней поверхности трубопровода. В настоящее время ведущие фирмы мира работают над созданием дефектоскопических аппаратов для определения продольных трещин и трещиноподобных дефектов в трубопроводах.

Например, новый дефектоскоп «Ультраскан CD» предназначен в основном для поиска продольных трещин. Он основан на принципе ультразвуковой технологии: используются волны сдвига, генерируемые при излучении ультразвукового импульса в связующей среде (нефть, вода и т.п.) под углом к поверхности трубопровода. Однако классификация дефектов по степени опасности может быть выполнена только после их дополнительного обследования в шурфах.

Например, данные результатов дефектоскопии «Ультрасканом» позволяют оценить опасность обнаруженных стресс-коррозионных дефектов и определить дефекты, которые должны быть вскрыты и обследованы локальными неразрушающими методами. До настоящего времени регистрация информации, полученной с дефектоскопических аппаратов, ведется как бы в режиме рентгеновской записи, т.е. получаются статические картины дефектов — измеряются только их геометрические характеристики без выявления поведения последних при нагружении трубопровода.

Один из способов неразрушающего контроля трубопроводов заключается в том, что посредством установленных на поршневом элементе преобразователей (сам поршневый элемент расположен в трубопроводе в текучей среде) излучается сигнал. Отраженные от внутренней и внешней поверхностей сигналы регистрируются, эта процедура проводится дважды при различных давлениях текучей среды в контролируемом участке трубопровода, а о наличии дефектов судят по разности зарегистрированных сигналов. Еще один известный способ нагружения трубопроводов при их неразрушающем контроле — создание перепада давления посредством перемещения по трубопроводу устройства поршневого типа посредством текучей среды.

Определение напряжения перед трещинами в элементах конструкций

Один из самых распространенных способов выглядит следующим образом: поверхность освещают когерентным излучением до полной величины нагрузки. Одновременно поэтапно нагружая элемент, записывают на каждом из этапов двухэкспозиционные голограммы во встречных пучках для поверхности элемента в зоне вершины трещины и регистрируют интерференционные картины, по параметрам которых рассчитывают напряжение перед трещиной.

Оценка опасности обнаруженных при внутритрубной инспекции дефектов

Каждый дефект характеризуется двумя определенными параметрами: относительной глубиной (d/t, где d — максимальная глубина дефекта, t — толщина стенки трубопровода) и длиной L в продольном направлении трубопровода. В результате расчета для каждого дефекта определяется степень опасности, в соответствии с которой дефект классифицируется по трем категориям: «опасные», «неопасные» и «недопустимые».

Для «неопасных» дефектов, учитывая, что они составляют абсолютное большинство, дополнительно вводится подкатегория «потенциально опасные». Для обследованного участка строится кривая, характеризующая границу опасности коррозионных дефектов типа коррозионных язв и пятен. В качестве критерия опасности дефекта принято условие разрушения трубопровода по этому дефекту при величине разрушающего давления на уровне минимального испытательного давления по СНиП III-42.80.

Таким образом, все дефекты, лежащие на кривой, имеют одинаковую степень опасности, для них коэффициент опасности дефекта К = 1. Более высокую точность оценки опасности дефектов, обнаруженных с помощью внутритрубных дефектоскопических снарядов, может обеспечить изменение режимов движения и съема информации с целью получения динамических характеристик обнаруженных дефектов, т.е. их поведения при нагружении трубопровода.

Для этого по трубопроводу пропускают дефектоскопический снаряд с пошаговыми остановками или замедлением, при этом в каждой исследуемой зоне многократно регистрируют различные величины параметров текучей среды, например, давление, скорость, температуру. По этим данным определяют величины изменений номинальных параметров состояния трубопровода (ПСТ), а также многократно регистрируют информацию и находят максимальные величины ПСТ как сумму номинальных ПСТ и величин изменений максимальных локальных ПСТ, экстраполированных по величинам соответствующих им, например, рабочих параметров текучей среды, и сравнивают полученные максимальные величины ПСТ с допустимыми значениями.

Так, в качестве величин изменений номинальных ПСТ определяют величины изменений номинальных напряжений (деформаций), а в качестве бортовых используют методы, например, голографической интерферометрии, позволяющие регистрировать двухэкспозиционные голограммы исследуемых зон трубопровода. По восстановленным с этих голограмм интерферограммам изменений нормальных компонент векторов перемещений внутренней поверхности трубопровода определяют величины изменений изгибных составляющих напряжений (деформаций) у вершин трещин и далее находят максимальные величины напряжений (деформаций) вблизи дефектов как сумму номинальных величин и величин изменений максимальных локальных изгибных составляющих напряжений (деформаций), экстраполированных по величинам соответствующих им, например, рабочих параметров текучей среды, и сравнивают полученные максимальные величины ПСТ с допустимыми значениями. Предлагаемая методика оценивает не только наличие дефектов, допустимых и недопустимых требованиями контроля, но и их опасность с учетом действующих эксплуатационных нагрузок.

Для обоснования безопасности трубопроводов это имеет чрезвычайно важное значение.

Дефектоскопия должна производиться одним из методов неразрушающего контроля (радиографический, ультразвуковой, акустико-эмиссионный, магнитнопорошковый, капиллярный) в случаях, когда у специалистов, выполняющих обследование, возникает сомнение в качестве металла или сварного соединения того или иного элемента трубопровода.

Кроме этого, необходимо выборочно провести контроль не менее двух стыков на двух-трех трубопроводах одной установки каждой марки стали, работающих при температуре выше 450 0 С для углеродистых и выше 500 0 С для легированных сталей.

Выбор метода дефектоскопии, назначение объема и мест контроля осуществляют специалисты, выполняющие обследование. При этом выбранный метод неразрушающего контроля должен наиболее полно выявить дефекты и их границы.

Объем контроля сварных соединений должен соответствовать значениям, приведенным в таблице 19.

Таблица 19 - Объем контроля сварных соединений ультразвуковым или радиографическим методом в % от общего числа сваренных каждым сварщиком (но не менее одного) соединений

* Примечание.

Пооперационный контроль предусматривает:

а) проверку качества и соответствия труб и сварочных материалов требованиям стандартов и технических условий на изготовление и поставку;

б) проверку качества подготовки концов труб и деталей трубопроводов под сварку и качества сборки стыков (угол скоса кромок, совпадение кромок, зазор в стыке перед сваркой, правильность центровки труб, расположение и число прихваток, отсутствие трещин в прихватках);

в) проверку температуры предварительного подогрева;

г) проверку качества и технологии сварки (режима сварки, порядка наложения швов, качества послойной зачистки шлака);

д) проверку режимов термообработки сварных соединений.

Также контролю подвергаются:

Отремонтированные участки трубопровода (при отсутствии ремонтной документации) - в объеме 100 %;

Сварные соединения из разнородных сталей – в объеме 100 %.

В случае обнаружения при осмотре участков поверхности трубопровода с трещинами, трещин в сварных соединениях дефектные участки следует удалить, а аналогичные участки выборочно подвергнуть дефектоскопии. При неудовлетворительных результатах дефектоскопии специалистами, выполняющими обследование, должно быть принято решение о дополнительном объеме контроля дефектоскопией.

Ультразвуковой контроль сварных соединений должен выполняться по ГОСТ 14782-76 «Контроль неразрушающий. Соединения сварные. Методы ультразвуковые» в соответствии с отраслевыми стандартами или инструкциями, разработанными специализированными организациями.

Акустико-эмиссионный контроль проводится в соответствии с ПБ 03-593-03 «Правила организации и проведения акустико-эмиссионного контроля сосудов, аппаратов, котлов и технологических трубопроводов».

Радиографический контроль сварных соединений должен производиться в соответствии с ГОСТ 7512-82 «Контроль неразрушающий. Соединения сварные. Радиографический метод», инструкциями по радиографии или отраслевыми стандартами.

Результаты испытаний

Разработанный комплекс поисковой аппаратуры (А2075 SoNet,А1550 lntroVisoN, Вектор 2008.) был испытан в работе как на тестовых образцах труб, так и в реальных условиях на трубопроводе в процессе его переизоляции. Результаты испытаний А2075 SoNet на тестовой трубе диаметром 1420 мм c искусственно нанесенными моделями дефектов и естественными дефектами приведены на рис. 4 и в таблице,

где даны расшифровка полученных образов и выводы об обнаружении дефектов. Труба находится на территории опытно-экспериментальной базы (0Э6) 000 ВНИИГАЗ. B верхней части рис. 4 показана схема расположения дефектов и моделей дефектов в тестовой трубе. Под схемой расположена сканограмма этой трубы c образами дефектов в виде пятен. Ось Хна схеме и сканограмме направлена вдоль оси трубы и проградуирована в метрах. Ось Y (на сканограммах ось Z) направлена по окружности трубы и имеет дeления, соответствующие 12-ти часовой системе c началом отсчета от верхней образующей трубы. Направление отсчета по оси У выбрано по часовой стрелке при виде на торец трубы слева по рис. 4. Видно, что положения дефектов и моделей на схеме и сканограмме достаточно хорошо совпадают. Сдвиг всех образов сканограммы вниз по оси Y, относительно схемы, приблизительно на 0.5 ч вызван тем, что траектория движения сканирующего устройства была проложена не точно по верхней образующей трубы, a в положении 11.5 ч. Также видно, что сосредоточенные дефекты в виде сверлений диаметром 1015 мм на глубину около половины толщины стенки лежат на пороге обнаружения. Поперечный пропил длиной 260 мм не обнаружен вследствие того, что для ультразвуковой волны, распространяющейcя вдоль него, его начало и конец представляют собой неоднородности малых волновых размеров. В то же время все продольные дефекты в стенках трубы . КРН И продольный пропил хорошо видны на сканограмме. Сканограмма на рис. 5

получена при сканировании одношовной трубы диаметром 1420 мм., бывшей в длительной эксплуатации и вырезанной из трубопровода по причине появления в ней КРН. Труба находится на территории ДОАО Оргэнергогаз. B ней обнаружены две зоны КРН и множество очагов язвенной коррозии, первая зона КРН(на рис. 5 ее фотография слева) содержит трещины c максимальной глубиной 2 мм. Глубина трещин после их обнаружения приборомА1550 IntroVisor была измерена обычным дефектоскопом. Раскрытие трещин настолько мало, что их почти не видно на поверхности трубы. Эта зона имеет координаты 6.75 м по оси X (по дальности от начала сканирования) и 0.5 м по оси Z (по окружности трубы). Вторая зона КРН (Фото на рис. 5 справа) - цепь раскрывшихся трещин общей протяженностью около 180 мм и максимальной глубиной 7 мм. Ее координаты: 9.75 м по дальности и 0.7 м по окружности трубы. На сканограмме виден также образ продольного сварного шва - 155 м по окружности.Две продольные красные линии (0 и 23 м) соответствуют началу и концу зоны контроля. Испытания сканера-дефектоскопа А2075 SоNet в реальных условиях (рис. 6)

были проведены на линейном участке газопровода диаметром 1220 мм недалеко от г. Ухта. При этом исследовалось влияние качества зачистки трубы, остатков прайма, дождя и снега, прилипшего грунта на результаты контроля. Кроме того, была оценена помехоустойчивость прибора при контроле в условиях акустических и электромагнитных помех от работающей зачистной машины. На рис. 7

показана сканограмма бездефектного участка трубопровода без изоляции c выбоиной на поверхности, получившейся, видимо, от удара металлическим трубозахватом. Длина выбоины 15 мм, ширина 5 и глубина 3 мм. Она отклонена от продольной оси трубы примерно на 30. Образ выбоины на сканограмме хорошо виден в зоне c координатами 1.3 1.4 м по дальности и 0.39 м по окружности трубы. Образы продольных сварных швов в положениях 0.75 и 1.25 м по окружности. Прерывистые красные полосы в нижней части сканограммы образы сигналов, обошедших вокруг трубы. Все дефекты, обнаруженные при испытаниях сканера-дефектоскопа А2075 SoNet , были детально просмотрены c помощью томографа А1550 IntrоVisor , a их параметры были измерены. На рис. 8

приведена томограмма стенки (толщиной 17.2 мм) трубы магистрального газопровода диаметром 1420 мм c коррозионной трещиной глубиной 10 мм. Вертикальная ось координат на томограмме ось глубин, a горизонтальная ось совпадает c продольной осью апертуры антенной решетки томографа. Контроль выполнен антенной решеткой поперечных волн на частоте 4 МГц. Образ трещины на томограмме расположен на расстоянии 26 мм от начала координат, совпадающего c центром апертуры антенной решетки. Трещина отображена двумя пятнами красного цвета (рис. 8). Верхнее пятно вызвано сигналом от уголкового отражателя, образованного устьем трещины и внешней поверхностью трубы. Нижнее пятно на глубине 10 мм результат дифракции ультразвука на вершине трещины. Промежуточные точки трещины не видны вследствие зеркальной для ультразвука внутренней поверхности трещины, не дающей обратного отражения сигналов по траекториям, совпадающие c траекториями распространения зондирующих сигналов. Как видно, реальную высоту трещин оператор может измерить прямо по экрану прибора, не прибегая к сканированию антенной решеткой в перпендикулярном к трещине направлении,следует заметить, что данная томограмма реконструирована c использованием как прямого ультразвукового излучения, так и отраженного от донной поверхности стенки трубы. Испытания подтвердили эффективность предложенных решений и продемонстрировали высокую чувствительность аппаратуры, ее стабильную работу в условиях воздействия широкого спектра неблагоприятных факторов, помехоустойчивость и возможность контроля на расстояниях до 10 м от зачистной машины, надежность и достаточный запас прочности механических и электронных узлов. Созданный сканер-дефектоскоп хорошо совместим c оборудованием, использующимся в процессе переизоляции трубопровода и может быть внедрен в технологическую цепочку. Его сканирующее устройство должно двигаться непосредственно за зачистной машиной на рассто-янии30-40 мотнее. Тогда воздействия шума и праймовой пыли на технику и оператора будут минимальными.

Заключение

1. B результате исследований предложено инновационное сочетание методов НК для проведения диагностики трубопроводов при их переизоляции и разработаны технические средства, обеспечивающие комплексное решение этой проблемы.

2. Разработан мобильный ультразвуковой сканер-дефектоскоп А2075 SoNet, предназначенный для контроля основного металла тела трубы c производительностью до шести погонных метров в минуту без применения контактных жидкостей.

З. Оперативная проверка подозрительных областей, выявленных сканером-дефектоскопом, может выполняться c помощью ручного многоканального вихретокового дефектоскопаВектор 2008, позволяющего визуализировать и локализовать расположение стресс-коррозионных трещин.

4. Задача измерения глубины стресс-коррозионных трещин успешно решается ручным ультразвуковым томографом A1550 IntroVisor при использовании фазированных антенных решеток, работающих на поперечных волнах.

5. Практическая работа комплекса созданной дефектоскопической аппаратуры подтвердила эффективность предложенных методов, работоспособность аппаратуры в сложных климатических и эксплуатационных условиях и показала возможность включения комплекса в технологическую цепочку переизоляции трубопроводов.

б. При определенной доработке и совершенствовании разработанных технических средств они позволят повысить достоверность диагностики трубопроводов и качество ремонтных работ при капитальном ремонте, что неизменно повлечет за собой повышение эксплуатационной надежности трубопроводов.

В соответствии со СНиП 3.05.03-85, подрядная организация осуществляет ультрозвуковую дефектоскопию стыков трубопроводов при строительстве тепловой трассы IV категории. Затраты по контролю качества сварных швов определены по расценкам Сборника ГЭСНм-2001 № 39 «Контроль монтажных сварных соединений».

Возникли разногласия с заказчиком по источнику финансирования. Заказчик считает, что компенсация этих затрат должна иметь место за счет накладных расходов по статье «Расходы на содержание производственных лабораторий - оплата услуг, оказываемых лабораториям другими организациями ( , Приложение 6, раздел III, пункт 9).

Прав ли Заказчик?

Ответ:

Заказчик неправ, так как имеется дополнительное уточнение Росстроя по этому вопросу, где указано, что если неразрушающий контроль сварных соединений выполняется специализированными организациями, то эти затраты включаются в главу 9 сводного сметного расчета отдельной строкой в графы 7 и 8 и оплачиваются этим организациям на основании представленных счетов с заключением договора.

Письмо Росстроя от 28.01.2005г. № 6-35 приводится ниже. В «Методические указания по определению величины накладных расходов в строительстве», приложение 6, раздел III п. 9 «Расходы на содержание производственных лабораторий» указано, что в нормативах накладных расходах предусмотрены затраты на оплату услуг, оказываемых лабораториям другими организациями.

Уточнение этого положения связано с тем, что когда готовились эти Методические указания, Росстрой считал, что бюджетные организации будут оказывать услуги бесплатно. Однако фактически бюджетные организации по услугам создали частных посредников и Росстрой вынужден был внести уточнение по этому вопрос. Необходимо иметь в виду, что при наличии разночтений в действующих документах по какому-либо вопросу надлежит руководствоваться документом, вышедшим последним (письмо Росстроя от 25.02.2005г № 6-99 приводится ниже).

Федеральное агентство по строительству и жилищно-коммунальному хозяйству по поставленному вопросу сообщает. В случаях, когда ультразвуковой контроль и другие виды неразрушающего контроля сварных соединений осуществляются подрядными строительными организациями, затраты по их проведению относятся на накладные расходы подрядных организаций и компенсируются за счет накладных расходов, начисляемых в сметной документации и актах приемки выполненных работ при оплате работ заказчиком подрядчику.

В случаях, когда ультразвуковой контроль и другие виды неразрушающего контроля сварных соединений осуществляются специализированными организациями, затраты по организации контроля сварных соединений неразрушающими методами, выполняемого специализированными организациями, включаются в главу 9 сводного сметного расчета отдельной строкой в гр. 7 и 8 и оплачиваются специализированным организациям на основании представленных счетов с заключением договора на выполнение работ по контролю сварных соединений неразрушающими методами.

Аналогично и в части контроля бетона неразрушающими методами.

Затраты на штамповые испытания грунтов относятся к накладным расходам подрядных организаций. Затраты по геодезическому контролю за возведением зданий и сооружений и их конструктивных элементов, в том числе русловых опор, относятся к накладным расходам подрядных организаций. Затраты на разработку проектов производства работ, в том числе и технологический регламент выполнения этих работ относятся к накладным расходам подрядных организаций.

Письмо Федерального агентства по строительству и жилищно-коммунальному хозяйству

Федеральное агентство по строительству и жилищно-коммунальному хозяйству по поставленному вопросу сообщает.

С утверждением Методики определения стоимости строительной продукции на территории Российской Федерации - , Свод правил по определению стоимости строительства в составе предпроектной и проектно-сметной документации - СП 81-09-94, - утратил силу.

По вопросам определения размера средств на надлежит руководствоваться упомянутой выше Методикой и Сборником сметных норм затрат на строительство временных зданий и сооружений - .

При наличии разночтений в действующих документах по какому-либо вопросу надлежит руководствоваться документом, вышедшим последним.

Начальник Управления строительства Р.А. Максаков