Дистанционное управление на ик лучах своими руками. Изготовление одноканальной ИК системы дистанционного управления своими руками, маcтер-класс с фото. Настройка системы дистанционного управления ик лучах

Завязка или «Как начинался девайс»

…Когда я пришёл, Виктория сидела на диване, уставившись в телевизор. День выдался тяжёлый, поэтому ей не хотелось ничего делать. Несколько минут мы смотрели какой-то попсовый сериал, потом он закончился, и Вика выключила телевизор. В комнате стало темно. На улице шумел дождь, и от этого казалось, что дома тоже холодно.
Вика поднялась с дивана и принялась, на ощупь, искать выключатель от светильника. Настенный светильник висел, почему-то, не у дивана, а на другой стене и приходилось топать через всю комнату, чтобы зажечь свет. Когда она, наконец, включила его, комната наполнилась тёплым светом лампочки накаливания.
Около меня, на помятой простыне, лежал пульт от телевизора. Нижние кнопки без опознавательных знаков и, скорее всего, не использовались. И тут у меня возникла интересная мысль…
— Вик, а хочешь, я сделаю так, что твой светильник можно будет пультом от ящика включить? Там даже кнопки лишние есть…

Концепция
Наше устройство должно уметь принимать сигнал с ИК-пульта, отличать «свою» кнопку от других, и управлять нагрузкой. Первый и последний пункты простые, как топор. А вот со вторым немного интереснее. Я решил не ограничиваться каким-то конкретным пультом (Почему? – «Не интересно так!»), а сделать систему, которая может работать с разными моделями пультов от разной техники. Лишь бы ИК-приёмник не спасовал, и уверенно ловил сигнал.

Ловить сигнал будем с помощью фотоприёмника . Причем не каждый приёмник подойдёт – несущая частота должна совпадать с частотой пульта. Несущая частота приёмника указана в его маркировке: TSOP17xx – 17 это модель приёмника, а хх – частота в килогерцах. А несущую частоту пульта можно найти в документации или в инете. В принципе, сигнал будет приниматься, даже если частоты не совпадают, но чувствительность будет фиговой – придётся тыкать пультом прямо в приёмник.

Каждая компания, выпускающая бытовую технику, вынуждена соблюдать стандарты при изготовлении «железа». И частоты модуляции у пультов, тоже стандартные. Зато разработчики отрываются на программной части – разнообразие протоколов обмена между пультом и устройством просто поражает. Поэтому, пришлось придумать универсальный алгоритм, которому плевать на протокол обмена. Работает он так:

В памяти устройства хранятся контрольные точки. Для каждой такой точки нужно записать время и состояние выхода с ИК-приёмника – 0 или 1.
При получении сигнала с пульта, МК будет последовательно проверять каждую точку. Если все точки совпали – то это была та самая кнопка, на которую устройство запрограммировали. А если выход с приёмника хотя-бы в одной точке не совпал с шаблоном, то устройство никак не отреагирует.

Впрочем, баги никто не отменял! Возможно, что, сигнал будет отличаться от шаблона, но
в контрольных точках значения будут одинаковые. Получится ложное срабатывание. Казалось-бы – редкостное западло, и бороться с ним пипец сложно! Но на самом деле не всё так плохо (а местами даже хорошо).

Во-первых, у нас ведь цифровой сигнал, а значит, импульсы идут с постоянными задержками (таймингами) и просто-так не возникают. Поэтому, если точки стоят достаточно плотно, то можно не бояться, что какой-нибудь импульс будет пропущен.

Во-вторых мелкий шум (обычно выглядит, как редкие короткие импульсы) в большинстве случаев идёт лесом – ибо если он не попадёт прямо на контрольную точку, то нифига не повлияет на систему. Значит у нас есть естественная защита от шума.

Второй тип ошибок (aka «Пропуск команды») бывает из-за того, что точка расположена слишком близко к фронту импульса (к тому месту, где сигнал на выходе приёмника меняет свой уровень).
Представь себе, что через несколько микросекунд после контрольной точки сигнал должен меняться с HIGH на LOW. А теперь представь, что пульт выдал команду чуть быстрее, чем обычно (довольно часто случается). Фронт импульса сдвинулся во времени, и теперь он происходит ДО контрольной точки! Выход с приёмника не совпадёт с шаблоном и система сбросится.
Чтобы этого не происходило, нужно размещать контрольные точки подальше от фронтов.

«Всё круто» — скажешь ты – «Но откуда мне взять контрольные точки?». Вот и я над этим долго тупил. В результате решил доверить расстановку точек тебе.
На устройстве есть джампер J1. Если при включении он замкнут – устройство будет тупо передавать через UART всё, что выдаёт ИК-приёмник. На другой стороне провода эти данные принимает моя программа, которая выдаёт на экран компа импульсы с TSOP’а. Тебе остаётся только мышкой раскидать по этому графику контрольные точки, и прошить их в EEPROM. Если возможности использовать UART нету, то на помощь приходит джампер J2. Когда он замкнут – устройство не выдаёт данные по UART, а складывает их в EEPROM.


Схема
Простая до безобразия. В качестве контроллера я взял ATTiny2313. Частота 4 мегагерца, от кварца, или внутренней RC цепочки.
На отдельный разъём выведены линии RX и TX для связи, и питание. Туда – же выведен RESET для того чтобы можно было перепрошивать МК, не вынимая из устройства.
Выход фотоприёмника подключается к INT0, он подтянут к питанию через резистор в 33к. Если будут сильные помехи, то можно поставить туда резистор поменьше, например, 10к.
На пинах D4 и D5 висят джамперы. Jumper1 на D5 и Jumper2 на D4.

К пину D6 подцеплен силовой модуль. Причём симистор я взял самый мелкий из тех, что у меня были – BT131. Ток у него 1А – не круто, но зато корпус не слишком большой — ТО92. Для мелкой нагрузки самое то. Опторазвязку я сделал на MOC3023 – у неё нет датчика пересечения нуля, а значит она подходит для плавного управления нагрузкой (здесь я это так и не реализовал).

Порт B почти полностью выведен на разъём – туда можно прицепить индикатор или ещё что-нибудь. Этим-же разъёмом я пользуюсь при прошивке девайса. Пин B0 занят светодиодом.

Питается всё это дело через LM70L05 и диодный мост. То есть на вход можно подавать переменное напряжение, например, с трансформатора. Главное, чтобы оно не превышало 25 Вольт, а то умрёт либо стабилизатор, либо кондер.

Плата получилась вот такая:


Да, она немного отличается от той платы, которая лежит в архиве. Но это не значит, что я сделал себе убер-продвинутую плату, а вам подсунул демо версию:). Напротив, моя плата имеет пару недостатков, которых нет в конечной версии: у меня не выведена на штырёк ножка RESET, и светодиод висит на PB7. А это не очень способствует внутрисхемному программированию.

Прошивка
Устройство может работать в двух режимах. В первом – когда J2 замкнут – оно просто передаёт импульсы с фотоприёмника в UART. С него и начнём:

UART работает на скорости 9600, т.е, при частоте 4МГц в регистр UBRR записываем 25.

…ждём, пока не дёрнется ножка фотоприёмника. Как только она опустилась (изначально-то она болтается на pull-up резисторе) мы запускаем таймер (TIMER/COUNTER1, тот, что на 16 бит) и врубаем прерывание INT0 на любое изменение входа – any logical change (ICS00 = 1). Таймер тикает… ждём.

Импульс с пульта кончился – выход с фотоприёмника взметнулся вверх, прерывание сработало. Теперь записываем в память значение таймера и сбрасываем таймер. Ещё нужно инкрементировать указатель записи, чтобы в следующем прерывании записать в другую ячейку памяти.

Ещё импульс… выход дёргается… прерывание… запись значения таймера в память… сброс таймера… указатель + 2 (мы пишем два байта за раз)…

И так будет продолжаться до тех пор, пока не станет ясно, что конец (оперативки) близок. Или, пока сигнал не кончится. В любом случае, мы стопорим таймер и отключаем прерывания. Потом, не спеша выкидываем всё, что насобирали, в UART. Или, если J2 замкнут – в EEPROM.

В конце можно затупить в бесконечный цикл и ждать ресета – миссия выполнена.
А на выходе получится последовательность чисел. Каждое из них – время между изменениями состояния выхода TSOP’a. Зная, с чего началась эта последовательность (А мы знаем! Это перепад с HIGH на LOW), мы можем восстановить всю картину:

После инициализации сидим и ждём, пока TSOP дёрнется. Как только это случилось – читаем из EEPROM первую точку, и в простом цикле тупим столько, сколько там написано. При этом время считаем пачками по 32us. Выйдя из ступора, проверяем – что-там на выходе приёмника.

Если выход не совпал с тем, что мы ожидали – это не наша команда. Можно спокойно дожидаться конца сигнала и начинать всё сначала.

Если выход соответствует нашим ожиданиям – загружаем следующюю точку и проверяем её. Так до тех пор, пока не наткнёмся на точку, время которой = 0. Это значит, что точек больше нет. Значит вся команда совпала, и можно дёргать нагрузку.

Вот так, получается, простенький алгоритм. Но ведь чем проще, тем надёжнее!

Софтина
Сначала я думал сделать автоматическое запоминание шаблона. То есть ты замыкаешь джампер, тыкаешь пультом в TSOP, а МК сам расставляет контрольные точки и складывает их в EEPROM. Потом стало ясно, что идея бредовая: более-менее адекватный алгоритм получится чересчур сложным. Или не будет универсальным.

Второй идеей была программка для компа, в которой можно самому расставить контрольные точки. Не слишком технологично, но всяко лучше, чем доверять это дело МК.


Приучаем девайс отзываться на нужную кнопку пульта:

1) Замыкаем перемычку J1.

2) Подключаем UART. Если возможности его подключить нету, то замыкаем джампер J2. Тогда устройство будет скидывать данные в EEPROM.

3) Врубаем питание.

4) Если мы решили юзать UART, то запускаем софт и смотрим на строку состояния (внизу окошка). Там должно быть написано “COM порт открыт”. Если не написано, то ищем косяк в подключении и тыкаем кнопу «Подключить».

5) Берём пульт и тыкаем нужной кнопкой в TSOP. Как только девайс почует, что сигнал пошёл – загорится светодиод. Сразу после этого устройство начнёт передавать по UART (или писать в EEPROM) данные. Когда передача закончилась, светодиод гаснет.

6.1) Если работаем по UART, то жмём кнопу «Загрузить по UART». И радуемся надписи «Загрузил график…» в строке состояния.

6.2) Если работаем через EEPROM, то читаем программатором EEPROM память и сохраняем в *.bin файл. (Именно bin!). Потом нажимаем в программе кнопку «Загрузить.bin» и выбираем файл с EEPROM.

7) Смотрим на загрузившийся график – это сигнал с TSOP’a. На боковой панели есть ползунок – им можно менять масштаб. Теперь тыкаем мышкой по графику – ставим контрольные точки. Правой кнопкой точки удаляются. Только не нужно их ставить слишком близко к фронтам. Получается примерно так:


8) Нажимаем «Сохранить.bin» и сохраняем точки. Потом прошиваем этот файл в EEPROM. Так-как мы запихиваем время между двумя точками в 7 бит, то оно ограничено 4мс. Если время между двумя точками превысит это значение – программа откажется запихивать точки в файл.

9) Снимаем джамперы. Перезагружаем устройство. Готово!

Видео с испытаний


Описываемый ниже светорегулятор предназначен для использования с лампами накаливания. Управляют им с помощью пульта дистанционного управления (ПДУ) от любой бытовой аппаратуры (телевизор, видеопроигрыватель и т. д.). Устройство может быть полезно людям с ограниченными возможностями передвижения или просто людям, ценящим комфорт. Кроме того, регулятор позволяет экономить электроэнергию за счёт более разумного и оправданного использования освещения. Несмотря на то что идея использовать ПДУ для управления освещением явно не нова и подобных устройств разработано немало, найти в радиолюбительской литературе и Интернете подходящее для повторения не удалось. В результате было собрано устройство, схема которого представлена на рис. 1.

Предлагаемый светорегулятор выполнен на доступной элементной базе, хорошо повторяется (изготовлено несколько экземпляров) и собранный без ошибок в монтаже начинает работать сразу. Отмечена чёткая, уверенная, без сбоев и ложных самопроизвольных срабатываний работа регулятора. Функцию коммутирующего элемента в нём выполняет микросхема фазового регулятора мощности КР1182ПМ1, что делает возможным плавное переключение света, защищая нить накаливания лампы от преждевременного перегорания.

Регулятор работает следующим образом. При нажатии на любую кнопку ПДУ излучаемый ИК-сигнал принимается фотоприёмником В1. На его выходе (вывод 3) появляются пачки импульсов низкого уровня напряжения, которые через ограничивающий резистор R1 поступают на вход одновибратора, выполненного на микросхеме DA1, и запускают его. На выходе DA1 (вывод 3) формируется прямоугольный импульс положительной полярности, длительность которого зависит от сопротивления резистора R3 и ёмкости конденсатора С2 . Импульс приходит на тактовый вход (вывод 14) счётчика-дешифратора DD1 и устанавливает на его выходе 1 (вывод 2) высокий уровень. Через диод VD1 он поступает на вывод 6 микросхемы DA2, и осветительная лампа EL1 загорается в полный накал.

При следующем нажатии на кнопку ПДУ высокий уровень с выхода 1 DD1 переходит на выход 2 (вывод 4), и на вывод 6 DA2 поступает напряжение с делителя, образованного резисторами R4 и R8. Яркость лампы уменьшается. Дальнейшие нажатия на кнопку приводят к тому, что высокий уровень последовательно появляется на выходах 3, 4, 5 (соответственно выводы 7, 10, 1), в делитель напряжения, поступающего на вывод 6 DA2, включаются резисторы R5, R6, R7, и яркость лампы ещё более понижается. Когда же высокий уровень появляется на выходе 6 (вывод 5), который соединён с входом R (вывод 15), счётчик устанавливается в нулевое состояние, в котором напряжение на всех его выходах имеет низкий уровень. Лампа гаснет. Далее всё повторяется.

Цепь R2C1 введена для повышения стабильности работы устройства. Диоды VD1-VD5 играют роль разделительных. Элементы VD6-VD10, R9, R10 и конденсаторы C4, C5 образуют источник питания устройства. Интегральный стабилизатор DA3 стабилизирует напряжение питания фотоприёмника B1.

Регулятор собран на печатной плате (рис. 2) из фольгированного с одной стороны стеклотекстолита. Все резисторы и диоды установлены перпендикулярно плате (элементы цепей VD2R4-VD5R7, R9R10 впаяны в плату одним выводом, вторые соединены друг с другом). Фотоприёмник B1 установлен над корпусом таймера DA1, для чего его выводы согнуты под прямым углом. К электросети и нагрузке плата подключена через соединительную колодку с винтовыми зажимами. Внешний вид смонтированной платы показан на рис. 3.

Возможная замена микросхемы КР1006ВИ1 - таймеры 555 с различными буквенными индексами (NE, LM и др.), интегрального стабилизатора L78L05 - отечественный КР1157ЕН502А и др. с выходным напряжением 5 В. Диоды VD1-VD5 - любые маломощные, VD6-VD9 -1N4004-1N4007, КД209А, КД209В и др. с обратным напряжением не менее 400 В. Стабилитрон КС191М заменим любым маломощным с напряжением стабилизации 9...10 В.

Для управления регулятором автор использует пульт от телевизора "Горизонт". Испытывались фотоприёмники TSOP1133, TSOP1733. Результат одинаков. В помещении площадью 25 м 2 плата, расположенная на столе, уверенно принимала отражённый сигнал при направлении пульта в разные стороны, не мешали даже расположенные в помещении предметы обстановки. При накрывании платы листом бумаги чувствительность устройства несколько падала. И лишь после того как фотоприёмник был обёрнут слоем чёрной изоленты, он стал принимать только прямое излучение от ПДУ. Но и его оказалось достаточно, чтобы нормально пользоваться регулятором.

В устройстве можно применить и другие фотоприёмники, но для максимальной дальности приёма важно, чтобы несущие частоты ПДУ и фотоприёмника были одинаковыми (для TSOP1133 - 33 кГц ). Хотелось также добавить, что необходимо оберегать фотоприёмник от прямых солнечных лучей и яркого света электроламп.

Плата установлена в декоративном кожухе, закрывающем крепление люстры к потолку. Как показала практика, отражённого от него ИК-излучения вполне достаточно для переключения. Если кожух вплотную прилегает к потолку, в нём необходимо просверлить одно-два небольших отверстия для попадания внутрь излучения ПДУ. Штатный выключатель светильника, расположенный на стене, должен быть включён и будет играть роль вспомогательного.

При желании подбором резисторов R4-R7 можно изменить яркость свечения лампы по своему вкусу. При увеличении сопротивления яркость падает, и наоборот. Мощность электролампы EL1 (или другой нагрузки, подключаемой к регулятору) не должна превышать 150 Вт. Для её значительного увеличения достаточно подключить симистор . Введением дополнительного оксидного конденсатора ёмкостью 100 мкФ (с номинальным напряжением 16 В) параллельно резистору R8 (плюсом к выводу 6 DA2) можно добиться плавного переключения света, что может быть более привлекательным.

Число уровней яркости света можно увеличить или уменьшить. Например, если желательно иметь шесть уровней, с выводом 15 микросхемы DD1 следует соединить её вывод 6, а вывод 5 через диод и резистор сопротивлением 46 кОм подключить к выводу 6 микросхемы DA2. Для получения девяти уровней к этому выводу DA2 подключают (также через диоды и резисторы) выводы 5, 6, 9, 11 DD1, а вывод 15 последней соединяют с общим проводом. Разумеется, для более "плавного" регулирования при увеличенном числе уровней придётся заново подобрать резисторы цепей, соединяющих выходы микросхемы DD1 с выводом 6 DA2.

Если необходимости в регулировании яркости нет, а достаточно только включать и выключать лампу, диоды VD1-VD5 и резисторы R4-R7 удаляют, а выход 2 (вывод 4) микросхемы DD1 соединяют с её входом R (вывод 15). Можно поступить иначе (рис. 4): заменить счётчик-дешифратор К561ИЕ8 одним из D-триггеров микросхемы К561ТМ2, работающим в счётном режиме, а микросхему КР1182ПМ1Р - симистором VS1, подключённым через оптрон U1 (нумерация остальных элементов продолжает начатую на рис. 1).

В этом случае мощность нагрузки будет ограничена параметрами симистора (при использовании BTA16-600B -2 кВт).

Очевидно, что светорегулятор можно использовать не только для управления освещением, но и для регулирования мощности различных электронагревательных приборов (например, ТЭНов), электродвигателей и т. п. устройств соответствующей мощности. Входную часть регулятора можно использовать как источник управляющего сигнала, оснащая простым ДУ различные устройства, например, такие, доступ к которым затруднён или они находятся на значительной высоте (сигнал снимают с вывода 3 DA1). Для поочерёдного управления двумя различными нагрузками можно задействовать второй триггер микросхемы К561ТМ2 (рис. 5). Включение нагрузок будет происходить в последовательности: включена нагрузка 1 - включена нагрузка 2 - включены обе нагрузки - выключены обе нагрузки - включена нагрузка 1 и т. д.

В заключение следует сказать, что более грамотным, наверное, было бы регулирование яркости света от минимальной к максимальной. В этом случае при включении меньше нагрузка на микросхему КР1182ПМ1Р, продлевается ресурс электроламп и для зрения не столь контрастный переход. Просто автору показалось это неудобным. А изменить направление регулирования можно, поменяв местами точки подключения анодов диодов VD1 c VD5 и VD2 c VD4.

И последнее. Все элементы и цепи регулятора имеют гальваническую связь с сетью 220 В, поэтому при испытаниях, налаживании и в процессе эксплуатации следует соблюдать правила электробезопасности.

Литература

1. Зельдин Е. Применение интегрального таймера КР1006ВИ1. - Радио, 1986, № 9, с. 36, 37.

2. Долгий А. Модули приёмников ИК-сиг-налов. - Радио, 2005, № 1, с. 47-50.

3. Немич А. Микросхема КР1182ПМ1 - фазовый регулятор мощности. - Радио, 1999, № 7, с. 44-46.


Дата публикации: 23.11.2014

Мнения читателей
  • Евгений / 25.02.2015 - 11:20
    Прошу прощения, а можно ли получить структурную схему по данному светорегулятору?

03-01-2009

Якорев Сергей

Введение

В сети Internet много простых устройств на базе контроллеров семейства PIC16F и PIC18F фирмы Microchip. Я предлагаю вашему вниманию достаточно сложное устройство. Эта статья думаю будет полезна всем, кто пишет программы для PIC18F, так как вы можете взяв исходные тексты программы создать свою систему реального времени. Информации будет предостаточно, начиная от теории и стандартов, заканчивая аппаратной и программной реализацией данного проекта. Исходные тексты на асемблере снабжены полными коментариями. Поэтому не сложно будет разобраться в программе.

Идея

Как всегда все начинается с идеи. Имеем карту Ставропольского края. На карте имеется 26 районов края. Размер карты 2 х 3 м. Необходимо управлять подсветкой выбранных районов. Управление должно осуществляться дистанционно по инфракрасному каналу управления, далее по тексту просто ИК или IR remote control. Одновременно команды управления должны передаваться на сервер управления на базе РС. При выборе района на карте, сервер управления отображает дополнительную инфомацию на мониторе. По командам с сервера можно управлять отображением информации на карте. Задача поставлена. В конечном итоге мы получили, то что вы видите на фото. Но прежде чем все это реализовать пришлось пройти некоторые этапы и решить различные технические задачи.


Вид со стороны монтажа.

Алгоритм работы устройства

С пульта дистанционного управления система управления отображением информации должна управляться не сложнее выбора программы на TV или задания номера трека на CD. Было решено пульт взять готовый от видеомагнитофона Philips. Выбор номера район задается последовательным нажатим кнопок пульта "Р+" далее две цифровые кнопки номера района, заканчиваем ввод "Р-". При первом выборе района осуществляется его выделение, (включается подсветка светодиодами) а при повторном выборе снимается выделение.
Протокол управления картой с РС сервера управления.

1. Исходящие команды, т.е. команды поступающие с устройства в РС:

1.1. При включении питания на устройстве в РС поступает команда: MAP999
1.2. При включении района: MAP(номер района)1
1.3. При выключении района: MAP(номер района)0
1.4. При включении всей карты: MAP001
1.5. При выключении всей карты: MAP000

2. Входящие команды:

2.1. Включить всю карту: MAP001
2.2. Выключить всю карту: MAP000
2.3. Включить район: MAP(номер района)1
2.4. Выключить район: MAP(номер района)0
2.5. Получить информацию о включенных районах: MAP999 В ответ на эту команду передаются данные о всех включенных районах в формате п. 1.2 (как будто все включенные районы заново включаются).
2.6. Получить информацию о выключенных районах: MAP995 В ответ на эту команду передаются данные о всех выключенных районах в формате п. 1.3 (как будто все выключенные районы заново выключаются).

При выключении последнего включенного района также должна поступать команда "выключение всей карты".
При включении последнего невключенного района также должна поступать команда "включение всей карты".
Номер района представляет собой ASCII-символы цифр (0x30-0x39).

От идеи к реализации

Предвидя, что довольно сложной проблемой может оказаться изготовление собственного корпуса для пульта ДУ, было решено взять готовый пульт ДУ от серийного аппарата. За основу системы ИК управления выбрана система команд ИК управления формата RC5. В настоящее время для управления различной аппаратурой очень широко используется дистанционное управление (ДУ) на ИК-лучах. Пожалуй, первым видом бытовой аппаратуры, где использовалось ИК ДУ, были телевизоры. Сейчас ДУ имеется в большинстве видов бытовой аудио- и видеотехники. Даже переносные музыкальные центры в последнее время все чаще оборудуют системой ДУ. Но бытовая техника это не единственная сфера применения ДУ. Довольно широко распространены приборы с ДУ и на производстве, и в научных лабораториях. В мире существует достаточно много не совместимых между собой систем ИК ДУ. Наибольшее распространение получила система RC-5. Эта система используется во многих телевизорах, в том числе и отечественных. В настоящее время разными заводами выпускается несколько модификаций пультов ДУ RC-5, причем, некоторые модели имеют вполне приличный дизайн. Это позволяет с наименьшими затратами получить самодельное устройство с ИК ДУ. Опуская подробности, почему была выбрана именно эта система, расмотрим теорию построения система на базе формата RC5.

Теория

Что бы понять как работает система управления необходимо вникнуть, что же представляет собой сигнал на выходе пульта ИК ДУ.

Система инфракрасного дистанционного управления RC-5 была разработана фирмой Philips для нужд управления бытовой аппаратурой. Когда мы нажимаем кнопку пульта, микросхема передатчика активизируется и генерирует последовательность импульсов, которые имеют заполнение частотой 36 КГц. Светодиоды преобразуют эти сигналы в ИК-излучение. Излученный сигнал принимается фотодиодом, который снова преобразует ИК-излучение в электрические импульсы. Эти импульсы усиливаются и демодулируются микросхемой приемника. Затем они подаются на декодер. Декодирование обычно осуществляется программно с помощью микроконтроллера. Об этом мы подробно поговорим в разделе посвященному декодированию. Код RC5 поддерживает 2048 команд. Эти команды составляют 32 группы (системы) по 64 команды в каждой. Каждая система используется для управления определенным устройством, таким как телевизор, видеомагнитофон и т.д.

На заре становления систем ИК управления формирование сигнала происходило аппаратно. Для этого разрабатывались специализированные ИС, а сейчас все чаще пульты ДУ делаются на основе микроконтроллера.

Одной из наиболее распространенных микросхем передатчика является микросхема SAA3010 . Кратко рассмотрим ее характеристики.

  • Напряжение питания - 2 .. 7 В
  • Потребляемый ток в ждущем режиме - не более 10 мка
  • Максимальный выходной ток - ±10 мА
  • Максимальная тактовая частота - 450 КГц

Структурная схема микросхемы SAA3010 показана на рисунке 1.

Рисунок 1. Структурная схема ИС SAA3010.

Описание выводов микросхемы SAA3010 приведено в таблице:

Вывод Обозначение Функция
1 X7 Входные линии матрицы кнопок
2 SSM Вход выбора режима работы
3-6 Z0-Z3 Входные линии матрицы кнопок
7 MDATA Модулированные выходные данные, 1/12 частоты резонатора, скважность 25%
8 DATA Выходные данные
9-13 DR7-DR3 Выходы сканирования
14 VSS Земля
15-17 DR2-DR0 Выходы сканирования
18 OSC Вход генератора
19 TP2 Тестовый вход 2
20 TP1 Тестовый вход 1
21-27 X0-X6 Входные линии матрицы кнопок
28 VDD Напряжение питания

Микросхема передатчика является основой пульта дистанционного управления. На практике один и тот же пульт дистанционного управления может использоваться для управления несколькими устройствами. Микросхема передатчика может адресовать 32 системы в двух различных режимах: комбинированном и в режиме одной системы. В комбинированном режиме сначала выбирается система, а затем команда. Номер выбранной системы (адресный код) хранится в специальном регистре и происходит передача команды, относящейся к этой системе. Таким образом, для передачи любой команды требуется последовательное нажатие двух кнопок. Это не совсем удобно и оправдано только при работе одновременно с большим количеством систем. На практике передатчик чаще используется в режиме одной системы. При этом вместо матрицы кнопок выбора системы монтируется перемычка, которая и определяет номер системы. В этом режиме для передачи любой команды требуется нажатие только одной кнопки. Применив переключатель, можно работать с несколькими системами. И в этом случае для передачи команды требуется нажатие только одной кнопки. Передаваемая команда будет относится к той системе, которая в данное время выбрана с помощью переключателя.

Для включения комбинированного режима на вывод передатчика SSM (Single System Mode) нужно подать низкий уровень. В этом режиме микросхема передатчика работает следующим образом: во время покоя X и Z-линии передатчика находятся в состоянии высокого уровня с помощью внутренних p-канальных подтягивающих транзисторов. Когда нажата кнопка в матрице X-DR или Z-DR, запускается цикл подавления дребезга клавиатуры. Если кнопка замкнута на протяжении 18 тактов, фиксируется сигнал "разрешение генератора". В конце цикла подавления дребезга DR-выходы выключаются и запускаются два цикла сканирования, включающие по очереди каждый выход DR. В первом цикле сканирования обнаруживается Z-адрес, во втором - X-адрес. Когда Z-вход (матрица системы) или X-вход (матрица команды) обнаруживается в состоянии нуля, происходит фиксация адреса. При нажатии кнопки в матрице системы передается последняя команда (т.е. все биты команды равны единице) в выбираемой сиcтеме. Эта команда передается до тех пор, пока кнопка выбора системы не будет отпущена. При нажатии кнопки в матрице команды передается команда вместе с адресом системы, хранимом в регистре-фиксаторе. Если кнопка отпущена до начала передачи, происходит сброс. Если же передача началась, то независимо от состояния кнопки, она будет выполнена полностью. Если одновременно нажато более одной Z или X кнопки, то генератор не запускается.

Для включения режима одной системы на выводе SSM должен быть высокий уровень, а адрес системы должен быть задан соответствующей перемычкой или переключателем. В этом режиме во время покоя X-линии передатчика находятся в состоянии высокого уровня. В то же время Z-линии выключены для предотвращения потребления тока. В первом из двух циклов сканирования определяется адрес системы и сохраняется в регистре-фиксаторе. Во втором цикле определяется номер команды. Эта команда передается вместе с адресом системы, хранимом в регистре-фиксаторе. Если нет перемычки Z-DR, то никакие коды не передаются.

Если кнопка была отпущена между посылками кода, то происходит сброс. Если кнопка была отпущена во время процедуры подавления дребезга или во время сканирования матрицы, но до обнаружения нажатия кнопки, то также происходит сброс. Выходы DR0 - DR7 имеют открытый сток, в состоянии покоя транзисторы открыты.

В коде RC-5 имеется дополнительный управляющий бит, который инвертируется при каждом отпускании кнопки. Этот бит информирует декодер о том, удерживается кнопка или произошло новое нажатие. Бит управления инвертируется только после полностью завершенной посылки. Циклы сканирования производятся перед каждой посылкой, поэтому даже если во время передачи посылки сменить нажатую кнопку на другую, все равно номер системы и команды будут переданы правильно.

Вывод OSC представляет собой вход/выход 1-выводного генератора и предназначен для подключения керамического резонатора на частоту 432 КГц. Последовательно с резонатором рекомендуется включть резистор сопротивлением 6,8 Ком.

Тестовые входы TP1 и TP2 в нормальном режиме работы должны быть соединены с землей. При высоком логическом уровне на TP1 повышается частота сканирования, а при высоком уровне на TP2 - частота работы сдвигового регистра.

В состоянии покоя выходы DATA и MDATA находятся в Z-состоянии. Генерируемая передатчиком на выходе MDATA последовательность импульсов имеет заполнение частотой 36 кГц (1/12 частоты тактового генератора) со скважностью 25%. На выходе DATA генерируется такая же последовательность, но без заполнения. Этот выход используется в том случае, когда микросхема передатчика выполняет функции контроллера встроенной клавиатуры. Сигнал на выходе DATA полностью идентичен сигналу на выходе микросхемы приемника дистанционного управления (но в отличие от приемника он не имеет инверсии). Оба этих сигнала могут обрабатываться одним и тем же декодером. Применение SAA3010 в качестве контроллера встроенной клавиатуры в некоторых случаях очень удобно, так как для опроса матрицы до 64 кнопок у микроконтроллера расходуется только один вход прерывания. Тем более, что микросхема передатчика допускает питание напряжением +5 В.

Передатчик генерирует 14-битное слово данных, формат которого следующий:


Рисунок 2. Формат слова данных кода RC-5.

Стартовые биты предназначены для установки АРУ в IC приемника. Управляющий бит является признаком нового нажатия. Длительность такта составляет 1.778 мс. Пока кнопка остается нажатой, слово данных передается с интервалом 64 такта, т.е. 113.778 мс (рис. 2).

Первые два импульса являются стартовыми, и оба - логические "1". Отметим, что половина бита (пустая) проходит раньше, чем приемник определит реальный старт сообщения.
Расширенный RC5 протокол использует только 1 старт-бит. Бит S2 трансформируется и добавляетсяк 6-му биту команды, образуя в целом 7 битов команды.

Третий бит - управляющий. Этот бит инвертируется всякий раз, когда нажимается клавиша. Таким путем приемник может различать клавишу, которая остается нажатой, или периодически нажимается.
Следующие 5 бит представляют адресс ИК устройства, который посылается с первым LSB. За адресом следуют 6 бит команды.
Сообщение содержит 14 бит, вместе с паузой имеют общую длительность 25.2 мс. Иногда сообщение может оказаться короче из-за того, что первая половина старт-бита S1 остается незаполненной. И если последний бит команды является логическим "0", тогда последняя часть бита сообщения также пустая.
Если клавиша остается нажатой, сообщение будет повторяться каждые 114 мс. Управляющий бит будет оставаться одинаковым во всех сообщениях. Это сигнал для программы приемника интерпретировать это как функцию автоповтора.

Для обеспечения хорошей помехоустойчивости применяется двухфазное кодирование (рис. 3).

Рисунок 3. Кодирование «0» и «1» в коде RC-5.

При использовании кода RC-5 может понадобиться вычислить средний потребляемый ток. Сделать это достаточно просто, если воспользоваться рис. 4, где показана подробная структура посылки.

Рисунок 4. Подробная структура посылки RC-5.

Для обеспечения одинакового реагирования оборудования на команды RC-5, коды распределены вполне определенным образом. Такая стандартизация позволяет конструировать передатчики, позволяющие управлять различными устройствами. С одними и теми же кодами команд для одинаковых функций в разных устройствах передатчик с относительно небольшим числом кнопок может управлять одновременно, например, аудиокомплексом, телевизором и видеомагнитофоном.

Номера систем для некоторых видов бытовой аппаратуры приведены ниже:

0 - Телевизор (TV)
2 - Телетекст
3 - Видеоданные
4 - Видеопроигрыватель (VLP)
5 - Кассетный видеомагнитофон (VCR)
8 - Видео тюнер (Sat.TV)
9 - Видеокамера
16 - Аудио предусилитель
17 - Тюнер
18 - Магнитофон
20 - Компакт-проигрыватель (CD)
21 - Проигрыватель (LP)
29 - Освещение

Остальные номера систем зарезервированы для будущей стандартизации или для экспериментального использования. Стандартизировано также соответствие некоторых кодов команд и функций.
Коды команд для некоторых функций приведены ниже:

0-9 - Цифровые величины 0-9
12 - Дежурный режим
15 - Дисплей
13 - mute
16 - громкость +
17 - громкость -
30 - поиск вперед
31 - поиск назад
45 - выброс
48 - пауза
50 - перемотка назад
51 - перемотка вперед
53 - воспроизведение
54 - стоп
55 - запись

Для того, чтобы на основе микросхемы передатчика построить законченный пульт ИК ДУ, необходим еще драйвер светодиода, который способен обеспечивать большой импульсный ток. Современные светодиоды работают в пультах ДУ при импульсных токах около 1 А. Драйвер светодиода очень удобно строить на низкопороговом (logic level) МОП-транзисторе, например, КП505А. Пример принципиальной схемы пульта приведен на рис. 5.

Рисунок 5. Принципиальная схема пульта RC-5.

Номер системы задается перемычкой между выводами Zi и DRj. Номер системы при этом будет следующим:

Код команды, который будет передаваться при нажатии кнопки, которая замыкает линию Xi с линией DRj, вычисляется следующим образом:

Приемник ИК ДУ должен восстанавливать данные с двухфазным кодированием, он должен реагировать на большие быстрые изменения уровня сигнала независимо от помех. Ширина импульсов на выходе приемника должна отличаться от номинальной не более чем на 10%. Приемник должен быть нечувствительным к постоянным внешним засветкам. Удовлетворить всем этим требованиям достаточно непросто. Старые реализации приемника ИК ДУ, даже с применением специализированных микросхем, содержали десятки компонентов. Такие приемники часто использовали резонансные контуры, настроенные на частоту 36 КГц. Все это делало конструкцию сложной в изготовлении и настройке, требовало применения хорошего экранирования. В последнее время большое распространение получили трехвыводные интегральные приемники ИК ДУ. В одном корпусе они объединяют фотодиод, предусилитель и формирователь. На выходе формируется обычный ТТЛ сигнал без заполнения 36 КГц, пригодный для дальнейшей обработки микроконтроллером. Такие приемники производятся многими фирмами, это SFH-506 фирмы Siemens, TFMS5360 фирмы Temic, ILM5360 производства ПО «Интеграл» и другие. В настоящее время имеются и более миниатюрные варианты таких микросхем. Поскольку кроме RC-5 существуют и другие стандарты, которые отличаются, в частности, частотой заполнения, существуют интегральные приемники для разных частот. Для работы с кодом RC-5 следует выбирать модели, рассчитанные на частоту заполнения 36 КГц.

В качестве приемника ИК ДУ можно применить и фотодиод с усилителем-формирователем, в качестве которого может служить специализированная микросхема КР1568ХЛ2. Схема такого приемника приведена на рисунке 6.

Рисунок 6. Приемник на микросхеме КР1568ХЛ2.

Для системы управления отображением информации я выбрал интегральный приемник ИК ДУ. В качестве приемника оптического излучения в микросхеме TSOP1736 установлен высокочувствительный PIN фотодиод, сигнал с которого поступает на входной усилитель, преобразующий выходной ток фотодиода в напряжение. Преобразованный сигнал поступает на усилитель с АРУ и далее на полосовой фильтр, который выделяет сигналы с рабочей частотой 36 кГц из шумов и помех. Выделенный сигнал поступает на демодулятор, который состоит из детектора и интегратора. В паузах между импульсами производится калибровка системы АРУ. Управляет этим схема управления. Благодаря такому построению, микросхема не реагирует на непрерывную помеху даже на рабочей частоте. Активный уровень выходного сигнала - низкий. Микросхема не требует для своей работы установки каких-либо внешних элементов. Все ее компоненты, включая фотоприемник, защищены от внешних наводок внутренним электрическим экраном и залиты специальной пластмассой. Эта пластмасса является фильтром, отсекающим оптические помехи в видимом диапазоне света. Благодаря всем этим мерам микросхема отличается весьма высокой чувствительностью и низкой вероятностью появления ложных сигналов. И всеже интегральные приемники весьма чувствительны к помехам по питанию, поэтому всегда рекомендуется применять фильтры, например, RC. Внешний вид интегрального фотоприемника и расположение выводов показаны на рис. 7.

Рисунок 7. Интегральный приемник RC-5.

Декодирование RC-5

Так как основу нашего устройства составляет микроконтроллера PIC18F252 декодирование кода RC-5 будем осуществлять программно. Предлагаемые в сети алгоритмы приема кода RC5 в большинстве своем не подходят для устройств реального времени, каким авляется наше устройство. Большинство предложенных алгоритмов используют программные циклы для формирования временных задержек и интервалов измерения. Для нашего случая это не подходит. Решено использовать прерывания по спаду сигнала на входе INT микроконтроллера PIC18F252, временные параметры измерять при помощи TMR0 микроконтроллера PIC18F252, этот же таймер вырабатывает прерывание когда истекло время ожидания следующего импульса, т.е. когда наступила пауза между двумя посылками. Демодулированный сигнал с выхода микросхемы DA1, поступает на вход INT0 микроконтроллера, в котором происходит его дешифрация и выдача дешифрированной команды на сдвиговые регистры для управления ключами. Алгоритм дешифрации основан на измерении временных интервалов между прерываниями микроконтроллера PIC18F252. Если внимательно посмотреть на рисунок 8, можно заметить некоторые особенности. Так если интервал между прерываниями микроконтроллера PIC18F252 был равен 2Т, где Т это длительность единичного импулься RC5, то принятый бит может быть 0 или 1. Все зависит от того какой бит был перед этим. В приведенной ниже программе с подробными коментариями это очень хорошо видно. Полностью весь проект доступен для скачивания и использования в личных целях. При перепечатывании ссылка обязательна.

Стандартные системы дистанционного управления применяемые в видеотехнике выполнены на специализированных микросхемах и обеспечивают очень большой набор команд. Но, для управления простыми приборами такого большого числа команд не требуется. В принципе, даже для оперативного управления телевизором достаточно четырех команд - перебор программ в обе стороны и регулировка громкости.

В данной статье рассматривается попытка автора построить четырехкомандную систему ДУ на логических микросхемах "К561" общего применения, и, при том, сделать схему не сложнее, чем на микроконтроллерах или специализированных микросхемах. На сколько эта попытка удачна -судить читателям.

Система кодирования выбрана наиболее простая - числоимпульсная. То есть, - каждой команде присваивается определенное число логических импульсов.

Схема передатчика

Схема передатчика показана на рисунке 1. Генератор заданного числа импульсов собран на микросхеме D1. На элементах D1.2 и D1.3 выполнен мультивибратор, генерирующий импульсы частотой около 10-12 кГц. Управление числом импульсов, выработанных этим мультивибратором происходит путем ограничения времени его работы при нажатии на кнопку подачи команды.

Сделано это предельно просто - при помощи RC-цепи на R1 и переключаемых конденсаторах С2-С5.

Кто-то может сказать, что таким образом задать точное число импульсов не возможно, - и будет прав. Но дело в том, что схема приемника сделана так, что точного задания числа импульсов и не требуется. Для первой команды нужно выработать число импульсов от 2048 до 2303, для второй - от 1024 до 1279, для третьей - от 512 до 767, и для четвертой - от 256 до 511 импульсов.

Таким образом, число вырабатываемых импульсов может "гулять" в очень широких пределах. Это делает отклонение величин таких элементов как конденсаторы и резисторы, а также дребезг контактов, присущий кнопкам управления, не очень ощутимым и практически не влияющим, при правильной наладке, на точность выполнения команд.

Рис. 1. Принципиальная схема передатчика ИК-сигнала.

Команды выбираются при помощи переключающих кнопок S1-S4. Кнопки должны быть переключающими для того, чтобы после подачи команды и отпускания кнопки происходил разряд конденсатора. Если этого не делать, то, при манипулировании кнопками, будут возникать ошибки от остаточного заряда конденсаторов.

Перед тем как конденсатор включается в состав RC-цепи от обязательно должен быть предварительно разряжен, только в этом случае получаемый временной интервал будет относительно стабильным.

Выходные импульсы поступают на токовый ключ на транзисторах VT1-VT2, на выходе которого включен инфракрасный светодиод HL1.

Питается передатчик от малогабаритной девятивольтовой гальванической батареи (типа - "Крона”).

Схема приемника

Принципиальная схема приемника показана на рис. 2. Транзисторная часть схемы -это усилитель-формирователь импульсов фотоприемника, собранный точно по схеме аналогичного узла отечественных телевизоров серии 3-УСЦТ, 2-УСЦТ.

При желании, можно его сделать по другой известной схеме, например, на микросхеме. Но схема испытывалась именно с таким транзисторным усилителем.

Рис. 2. Принципиальная схема приемника команд на ИК-лучах.

Излучение светодиода воспринимается фотодиодом VD1, преобразуется им в ток, который усиливается и преобразуется в логические импульсы схемой на VT3-VT7.

Схема дешифратора выполнена на двух микросхемах - D2 (К561ИЕ16) и D3 (К561ИР9). Импульсы с коллектора VT7 подаются на счетный вход D2 через цепочку R22-С13, устраняющую помехи. Пока нет команды на коллекторе VT7 имеется напряжение уровня логической единицы.

Диод VD3 закрыт и конденсатор С14 заряжен через R21 до уровня логической единицы, -на вход R D2 подана единица. Счетчик в нулевом положении.

При поступлении первого же импульса по его фронту транзистор VT7 открывается и это приводит к открыванию диода VD3, который разряжает конденсатор С14 и напряжение на R D2 падает до логического нуля. Теперь счетчик будет считать поступающие на его вход С импульсы, поскольку в промежутках между ними (когда на коллекторе VT7 единичный уровень) С14 не успевает зарядиться через R21 до единицы.

После того, как закончится командная посылка импульсы, естественно, на коллекторе VT7 прекращаются. Счетчик D2 останавливается в некотором состоянии. Конденсатор С14 заряжается через R21. В процессе этой зарядки, уровень логической единицы сначала поступает на вход С регистра D3, это переносит данные с параллельных входов регистра в его память.

Такой же код появляется и на его выходах. Затем, конденсатор С14 продолжает заряжаться и в определенный момент напряжение на входе R D2 достигает уровня логической единицы, что приводит к обнулению счетчика. Но код хранится в регистре 03, поэтому на его выходе остается уровень последней полученной команды.

При посылке следующей команды, все выше изложенные процессы повторяются и в регистр переписывается новый код.

Кодов всего четыре - 0001, 0010, 0100 и 1000. Уровни с выхода D3 можно подать на входы МОП-логики управляемой схемы. Или через транзисторные ключи на реле или другие коммутаторы. Все зависит от объекта управления.

Тот факт, что после посылки команды её код остается на выходе устройства до тех пор, пока не будет послана следующая команда может быть как преимуществом, так и минусом. Если нужно чтобы можно было переводить все выходы в нулевое положение, можно дополнить схему передатчика пятой кнопкой.

Эту кнопку нужно включить так же, как имеющиеся четыре, но емкость конденсатора выбрать около 1000 пФ. Будет подаваться команда, при которой передатчик будет формировать небольшое число импульсов, значительно меньше 256-ти.

Ни на одном из используемых выходов счетчика 02 не возникнет единицы при нажатии на пятую кнопку, но цикл приема команды будет завершен и в регистр запишутся только нули. Таким образом получится команда - "сброс всех выходов".

Детали и печатная плата

Рис. 3. Печатные платы ИК-передатчика и ИК-приемника.

Все транзисторы КТ3102 (и КТ3107) используются с буквой "Е", но это не значит, что нельзя применять и другие. Транзистор КТ972 может быть так же с другим буквенным индексом. ИК-светодиод может быть любым от систем дистанционного управления.

Микросхемы - серии К561, К1561, К176 и другие аналоги. Конденсаторы С2 - С5 желательно с минимальным температурным коэффициентом. Кнопки -импортные неизвестной марки, Кнопки могут быть любыми переключающими, но под них нужно менять разводку платы (что не сложно).

Передатчик и приемник собраны на двух малогабаритных печатный платах с односторонней фольгировкой. Разводка дорожек на схемах показана схематично, - размечено только их положение, но не обозначена их толщина и размеры монтажных площадок. На зачищенной заготовке платы, на фольге, дорожки нарисованы перманентным маркером, от руки, но придерживаясь схемы платы.

Травление - в растворе хлорного железа. После травления "маркер" смыт спиртом (или одеколоном).

Налаживание

Прежде всего нужно проверить канал связи. Нужно нажать кнопку любой команды и при этом, если есть оптическая связь между VD1 и HL1, на коллекторе VT7 должны быть импульсы. Если нет осциллографа наличие импульсов можно проверить при помощи пьезоэлектрической "пищалки” типа ЗП-1,ЗП-22 (или импортной от электронных часов), подключив её параллельно R20.

После того, как будет установлено, что канал связи работает, нужно периодически нажимая кнопку S4 подобрать сопротивление R2 таким, при котором будет уверенно включаться первая команда. Для удобства R2 можно временно заменить переменным.

Установите его в такое положение, при котором только начинает неуверенно срабатывать третья команда, а затем, - при котором только начинает неуверенно срабатывать первая команда. Заметьте эти положения переменно резистора, а затем поверните его с среднее между "заметками” положение. После проверьте функционирование других команд.

Немного подстройте переменный резистор (установленный вместо R2) так, чтобы уверенно исполнялись все команды. Если какая-то из команд "не хочет жить в мире" с другими, -подберите емкость её конденсатора.

После того как сопротивление R2 будет окончательно подобрано, - выпаяйте переменный резистор, измерьте его сопротивление и установите постоянный резистор такого сопротивления (или почти такого).

Проверьте еще раз работу устройства. При неправильном выборе сопротивления R2 или емкостей С2-С5 может быть одновременное включение нескольких команд. В этом случае, нужно точнее подобрать R2 или точнее подобрать емкость соответствующего конденсатора.

Плату приемника нужно экранировать или хотя бы, только ту её часть, на которое расположена схема усилителя-формирователя фотоприемника. Можно использовать и готовый фотоприемник от УСЦТ, подключив его выход к точке соединения VD3 и R22.

Всем привет! Здесь мы поговорим о том, как сделать самое простое ИК управление (). Управлять этой схемой можно даже обычным пультом от телевизора. Предупреждаю сразу, дистанция не велика - примерно 15 сантиметров, но даже такой результат обрадует новичка в работе. При самодельном передатчике дальность величивается в два раза, то есть примерно возрастает еще на 15 сантиметров. Делается блок ДУ просто. К 9-ти вольтовой "кроне" подключаем ИК светодиод через резистор в 100-150 ом, при этом ставим обычную кнопку без фиксации, приклеиваем это к батарейке изолентой, при этом изолента не должна препятствовать инфракрасному излучению ИК светодиода.

На фото показаны все те элементы, что нам понадобятся для сборки схемы

1. Фотодиод (можно почти любой)
2. Резистор на 1 ком, и на 300-500 ом (Для наглядности на фото выставил резисторы на 300 и 500 ом)
3. Подстроечный резистор на 47 ком.
4. Транзистор КТ972А или аналогичный по току и структуре.
5. Светодиод использовать можно любой низковольтный.

Принципиальная схема приёмника ИК управления на одном транзисторе:


Приступим к изготовлению фотоприемника. Его схема была взята из одного справочника. Сначала рисуем плату перманентным маркером. Но можно сделать это даже навесным монтажем, но желательно делать на текстолите. Моя плата выглядит так:


Ну теперь, естественно, приступаем к пайке элементов. Паяем транзистор:



Припаиваем резистор в 1 кОм (Килоом) и построечный резистор.


И наконец паяем последний элемент - это резистор на 300 - 500 Ом, я поставил 300 Ом. Разместил его с обратной стороны печатной платы, т.к он мне не позволил припять его с лицевой стороны, из-за своих мутационных лап =)


Все это дело чистим зубной щеткой и спиртом, дабы смыть остатки канифоли. Если всё собрано без ощибок и фотодиод исправный - заработает сразу. Видео работы данной конструкции можно посмотреть ниже:

На видеоролике дистанция маленькая, так как надо было смотреть одновремено и в камеру, и на пульт. Поэтому не смог сфокусировать направления пульта. Если вместо фотодиода поставить фоторезистор, то будет реагировать на свет, проверенно лично, чувствительность даже лучше, чем в оригинальных схемах фоторезистора. На схему подавал 12в, работает нормально - светодиод горит ярко, регулируется яркость и чувствительность фоторезистора. В настоящее время по этой схеме подбираю элементы, чтобы можно было питать ИК приёмник от 220 вольт, и выход на лампочку тоже был 220В. За предоставленную схему отдельное спасибо: thehunteronghosts . Материал предоставил: