Назначение механизма и их классификация. Структура механизмов. Классификация кинематических пар. Кинематические цепи. Регулирование периодических колебаний скорости. Строение водопроводного крана. Какой кран и смеситель лучше – обзор типов Плоский рычажны

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ТРАНСПОРТА

Кафедра Детали машин

ОБЗОР ОСНОВНЫХ ВИДОВ МЕХАНИЗМОВ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям по Теории механизмов и машин для студентов специальностей НР-130503, ПСТ-130501, НБ-130504, МОП-130602, АТХ-190601, СТЭ-190603, ПДМ-190205, СП-150202, ПТИ-260703, ТМ-151001, МКC-151002, МХП-240801, МСО-190207

очной и заочной полной и сокращенной форм обучения

Тюмень 2007

Утверждено редакционно-издательским советом

Тюменского государственного нефтегазового университета

Составители: доцент, к.т.н. Забанов Михаил Петрович

профессор, д.т.н. Бабичев Дмитрий Тихонович

ассистент, Панков Дмитрий Николаевич

© государственное образовательное учреждение высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

В процессе занятия необходимо ознакомиться с основными группами и видами механизмов, их графическими изображениями. Научиться представлять реальный механизм в виде схемы.

В отчете необходимо изобразить и описать классические виды механизмов.

Ведущей отраслью современной техники является машиностроение. Про­гресс машиностроения определяется созданием новых высокопроизводитель­ных и надежных машин. Решение этой важнейшей проблемы основывается на комплексном использовании результатов многих научных дисциплин и, в пер­вую очередь, теории механизмов и машин.

По мере развития машин содержание термина "машина" изменялось. Для современных машин дадим следующее определение: машина есть устройство, создаваемое человеком для преобразования энергии, материалов и информации с целью облегчения физического и умственного труда, увеличения его производительности и частичной или полной замены человека в его трудовых и физиологических функциях.

По выполняемым машинами функциям их делят на следующие классы:

1) Энергетические машины

2) Транспортные машины

3) Технологические машины

4) Контрольно-управляющие машины

5) Логические машины

6) Кибернетические машины

Определение термина "механизм" неоднократно менялось по мере того, как появлялись новые механизмы.

Механизм есть система тел, предназначенная для преобразования движения одного или нескольких твердых тел в требуемые движения других тел. Если в преобразовании движения кроме твердых тел участвуют жидкие или газообразные тела, то механизм называется соответственно гидравлическим или пневматическим. С точки зрения функционального назначения механизмы делятся на следующие виды:

1) Механизмы двигателей и преобразователей

2) Передаточные механизмы

3) Исполнительные механизмы

4) Механизмы управления, контроля и регулирования

5) Механизмы подачи, транспортировки и сортировки обрабатываемых изделий и объектов

6) Механизмы автоматического счета, взвешивания и упаковки готовой продукции

Основным признаком механизма является преобразование механического движения. Механизм входит в состав многих машин, т. к. для преобразования энергии, материалов и информации требуется обычно преобразование движения получаемого от двигателя. Нельзя отождествлять понятия "машина" и "механизм". Во-первых, кроме механизмов в машине всегда имеются дополни­тельные устройства, связанные с управлением механизмами. Во-вторых, есть машины, в которых нет механизмов. Например, в последние годы созданы тех­нологические машины, в которых каждый исполнительный орган приводится в движение от индивидуального электро- или гидродвигателя.

При описании механизмов, они были разделены на отдельные группы по признаку их конструктивного оформления (рычажные, кулачковые, фрикцион­ные, зубчатые и др.)

Механизмы образуются последовательным присоединениям звеньев к начальному механизму.

ЗВЕНО – одна или несколько неподвижно соединенных друг с другом деталей, входящих в механизм и движущихся, как одно целое .

ВХОДНОЕ ЗВЕНО – звено, которому сообщается движение, преобразуемое механизмом в требуемые движения других звеньев. Входное звено соединено с двигателем либо с выходным звеном другого механизма.

ВЫХОДНОЕ ЗВЕНО – звено, совершающее движение, для выполнения которого предназначен механизм. Выходное звено соединено с исполнительным устройством (рабочим органом, указателем прибора), либо со входным звеном другого механизма.

Звенья соединяются друг с другом подвижно посредством кинематических пар: вращательных (шарнир) и поступательных (ползун).

ТРАЕКТОРИЯ движения точки (звена) – линия перемещения точки в плоскости. Это может быть прямая линия или кривая.

РЫЧАЖНЫЕ МЕХАНИЗМЫ

Рычажными механизмами называют механизмы, в которые входят жесткие звенья, соединенные между собой вращательными и поступательными кинема­тическими парами. Простейшим рычажным механизмом является двухзвенный механизм , состоящий из неподвижного звена-стойки 2 (Рис.1.1 ) и подвижного рычага 1 , имеющего возможность вращаться вокруг неподвижной оси (обычно это начальный механизм).

Рис.1.1 Двухзвенный рычажный механизм

К двухзвенным рычажным механизмам относятся механизмы многих ро­тационных машин: электромоторов, лопастных турбин и вентиляторов. Меха­низмы всех этих машин состоят из стойки и вращающегося в неподвижных подшипниках звена (ротора).

Более сложными рычажными механизмами являются механизмы, состоя­щие из четырех звеньев, так называемые четырехзвенные механизмы .

На Рис.1.2 показан механизм шарнирного четырехзвенника, состоящего из трех подвижных звеньев 1, 2, 3 и одного неподвижного звена 4. Звено 1 , со­единенное со стойкой, может совершать полный оборот и носит название кри­вошипа. Такой шарнирный четырехзвенник, имеющий в своем составе один кривошип и одно коромысло называется кривошипно-коромысловым меха­низмом , где вращательное движение кривошипа посредством шатуна преобразуется в качательное движение коромысла. Если кривошип и шатун вытянуты в одну линию, то коромысло займет крайнее правое положение, а при наложении друг на друга – левое.

Рис. 1.2 Механизм шарнирного четырехзвенника

Примером такого механизма является механизм представленный на Рис.1.3 , где звено 1 – кривошип (входное звено), звено 2 – шатун, звено 3 – ко­ромысло. Точка M S двигаясь по кривой описывает траекторию . Одни траектории могут быть воспроизведены рычажными механизмами теоретически точно, другие – приближенно, с достаточной для практики степе­нью точности.

Рассматриваемый механизм, называемый симметричным механизмом Чебышева, часто применяют в качестве кругового направляющего механизма, у которого АВ = ВС = ВМ = 1. При указанных соотношениях

Рис. 1.3 Кривошипно-коромысловый механизм

точка М шатуна АВ описывает траекторию, симметричную относительно оси n - п . Угол наклона оси симметрии к линии центров СО определяется: ÐМСО = π – Ω / 2. Часть траектории точки М является дугой окружности радиуса О 1 М, что может быть использовано в механизмах с остановкой выходного звена.

Другим примером четырехзвенника является широко распро­страненный в технике кривошипно-ползунный механизм (Рис. 1.4 ).

Рис. 1.4 Кривошипно-ползунный механизм

В этом механизме вместо коромысла устанавливается ползун, движущийся в непод­вижной направляющей. Этот кривошипно-шатунный механизм применяют в поршневых двигателях, насосах, компрессорах и т.д. Если эксцентриситет е равен нулю, то получим центральный кривошипно-ползунный механизм или аксиальный. При е не равном нулю кривошипно-ползунный механизм называ­ется нецентральным или дезаксиальным. Здесь вращение кривошипа ОА через шатун АВ преобразуется в возвратно-поступательное движение ползуна. Есте­ственно крайние положения ползуна, будут при расположении кривошипа и шатуна в одну линию.

Если в рассмотренном механизме заменить неподвиж­ную направляющую на подвижную, которая называется кулисой, то получим четырехзвенный кулисный механизм с кулисным камнем. Примером такого механизма может слу­жить кулисный механизм строгального станка (Рис.1.5 ). Кривошип 1 , враща­ясь вокруг оси, через кулисный камень 2 заставляет кулису 3 совершать качательное движение. При этом кулисный камень относительно кулисы движется возвратно-поступательно.

Рис. 1.5 Четырехзвенный кулисный механизм

Крайние положения кулисы будут при перпендикулярном расположении к ней кривошипа. Построить такие положения просто: изображается окружность радиусом равным длине кривошипа (траектория движения точки А ), и проводятся касательные из оси вращения кулисы.

Таким образом звенья могут совершать поступательное , вращательное или сложное движения.

  • 1.3. Кулачковые механизмы. Типы кулачковых механизмов. Преимущества и недостатки. Основное назначение.
  • 1.4. Зубчатые механизмы. Виды зубчатых механизмов. Основное назначение.
  • 1.5. Задачи и цели структурного анализа и синтеза механизмов.
  • 1.6. Звено, наименование звеньев.
  • 1.7. Кинематическая пара. Классификация кинематических пар. Низшие и высшие кинематические пары.
  • 1.8. Кинематическая цепь. Виды кинематических цепей. Кинематические пары плоских цепей.
  • 1.9. Основной принцип образования механизмов. Структурный синтез механизмов. Начальный механизм. Структурная группа (группа Асура). Классификация структурных групп.
  • 1.10. Структурный анализ механизмов. Определение степени свободы пространственных и плоских механизмов.
  • 1.11. Лишние степени свободы. Избыточные и пассивные связи и звенья.
  • 1.12. Замена высших кинематических пар низшими. Условия эквивалентности.
  • 1.13. Формула строения механизма. Классификация рычажных механизмов по структурному признаку (по Артоболевскому и.И.).
  • 2.5. Графический метод. Метод графического дифференцирования.
  • 2.6. Графо-аналитический метод (метод планов). Примеры построения планов скоростей и ускорений.
  • 2.7. Аналоги кинематических параметров.
  • 3. Динамический анализ рычажных механизмов.
  • 3.1. Задачи динамического анализа механизмов. Их содержание.
  • 3.2. Силовой анализ механизмов. Статический и динамический расчёт. Задачи и цели. Основные допущения. Уравнения статики.
  • 3.3. Классификация сил. Внешние и внутренние силы. Статические и динамические нагрузки.
  • 3.4. Силовой расчёт рычажных механизмов методом кинетостатики. Принципы силового расчёта. Уравнения кинетостатики.
  • 3.5. Пример выполнения силового расчёта.
  • 3.6. Учёт сил трения при силовом расчёте. Виды трения. Трение в поступательной паре. Трение во вращательной паре. Угол трения, круг трения. Приведённый коэффициент трения. Расчёт мощности трения.
  • 3.7. Кпд машины при последовательном и параллельном соединении механизмов.
  • 3.8. Кпд винтовой пары.
  • 3.9. Мгновенный кпд рычажного механизма. Методика расчёта.
  • 3.10. Уравновешивание рычажных механизмов. Постановка задачи. Пример.
  • 3.11. Уравновешивание вращающихся масс звеньев – балансировка. Постановка задачи. Виды неуравновешенности звена.
  • 3.12. Признаки уравновешенного звена.
  • 3.13. Движение механизмов под действием приложенных сил – динамика. Основные задачи динамики.
  • 3.14. Замена механизма на динамически эквивалентную модель. Звено приведения. Приведение сил и масс. Условия динамической эквивалентности.
  • 3.15. Уравнения движения звена приведения в дифференциальной и интегральной (энергетической) формах.
  • 4.2. Синтез рычажных механизмов на примере шарнирного 4-х звенника. Метод замкнутости векторного контура.
  • 5. Анализ и синтез зубчатых механизмов.
  • 5.1. Синтез зубчатых механизмов. Теорема Виллиса о передаче движения в высшей паре – основной закон зацепления.
  • 5.2. Эвольвентные зубчатые механизмы. Их преимущества.
  • 5.3. Эвольвента круга и её свойства. Использование в зубчатых механизмах.
  • 5.4. Геометрия эвольвентного зубчатого колеса. Влияние смещения исходного производящего контура на геометрические параметры колеса (нулевые и исправленные зубчатые колёса).
  • 5.5. Монтажное зацепление эвольвентных исправленных зубчатых колёс. Основные параметры. Влияние смещения исходного производящего контура.
  • 5.6. Методы образования эвольвентного профиля зубчатого колеса. Станочное зацепление. Условия появления и устранения подреза ножки зуба. Цели смещения исходного контура.
  • 5.7. Качественные показатели зубчатого зацепления. Влияние смещения исходного производящего контура на качественные показатели.
  • 5.9. Силовой расчёт зубчатых механизмов. Определение крутящих моментов по уравнению мощности. Уравнение редукции моментов.
  • Ответы на экзаменационные вопросы по ТММ

    Московский Государственный Университет

    Инженерной Экологии

    Теория машин и механизмов (ТММ)

    Экзаменационные вопросы

    для учебных групп дневного отделения.

    1. Структура механизмов

    1.1. Машина и механизм. Классификация механизмов по функциональному и структурно-конструктивному признакам.

    ОТВЕТ: По определению академика Артоболевского:

    Машина – есть устройства, создаваемые человеком для изучения и использования законов природы с целью облегчения физического и умственного труда, повышения его производительности путём частичной или полной замены его в трудовых и физиологических функциях.

    Механизм – система тел, предназначенная для преобразования движения одного или нескольких тел в требуемое движение других твёрдых тел. Если в преобразовании движения участвуют жидкие или газообразные тела, то механизм называется гидравлическим или пневматическим. Обычно в механизме имеется одно входное звено, получающее движение от двигателя, и одно выходное звено, соединённое с рабочим органом или указателем прибора. Механизмы бывают плоские и пространственные.

    Классификация машин по функциональному назначению :

    Энергетические (двигатели, генераторы).

    Рабочие (транспортные, технологические).

    Информационные (контрольно-управляющие, математические).

    Кибернетические.

    Машины состоят из механизмов.

    По функциональной классификации различают :

    Механизмы двигателей и преобразователей;

    Исполнительные механизмы;

    Передаточные механизмы;

    Механизмы контроля, регулирования, наладки;

    Механизмы подачи, питания, сортировки;

    Механизмы счёта, взвешивания, упаковки.

    Много общего с точки зрения структуры и методики расчёта их механических параметров.

    Структурно-конструктивная классификация :

    Рычажные механизмы;

    Кулачковые механизмы;

    Зубчатые механизмы (состоят из зубчатых колёс);

    Комбинированные.

    1.2. Рычажные механизмы. Преимущества и недостатки. Применение в технических устройствах.

    ОТВЕТ: Рычажные механизмы состоят из тел, выполненных в виде рычагов, стержней. Эти стержни или рычаги взаимодействуют друг с другом по поверхности. Поэтому рычажные механизмы способны воспринимать и передавать значительные усилия.

    Используются в качестве основных технологических устройств. Однако воспроизведение требуемого закона движения такими механизмами весьма ограничено.

    1.3. Кулачковые механизмы. Типы кулачковых механизмов. Преимущества и недостатки. Основное назначение.

    ОТВЕТ: Кулачковый механизм состоит из тела криволинейной формы, характер движения которого определяет движение всего механизма. Основное преимущество заключается в том, что, не изменяя количества звеньев, можно воспроизвести любой закон движения за счёт изменения профиля кулачка. Но в кулачковом механизме имеются звенья, соприкасающиеся в точке, или по линии, что существенно ограничивает величину передаваемого усилия в связи с появлением очень больших удельных давлений. Поэтому кулачковые механизмы в основном используются как средство автоматизации технологического процесса, где кулачок играет роль жесткого программоносителя.

    1.4. Зубчатые механизмы. Виды зубчатых механизмов. Основное назначение.

    ОТВЕТ: Зубчатым механизмом называется механизм, в состав которого входят зубчатые колёса (тело, имеющее замкнутую систему выступов или зубьев).

    Зубчатые механизмы в основном используются для передачи вращательного движения с изменением, если это необходимо, величины и направления угловой скорости.

    Передача движения в этих механизмах осуществляется за счёт бокового давления специально профилированных зубьев. Для воспроизведения заданного соотношения угловых скоростей профили зубьев должны быть взаимоогибаемые, то есть профилю зуба одного колеса должен соответствовать вполне определённый профиль зуба другого колеса. Профили зубьев могут быть очерчены различными кривыми, но наиболее распространение получили механизмы с эвольвентным профилем зуба, то есть с зубом, очерченным по эвольвенте.

    Для воспроизведения постоянного соотношения угловых скоростей используются механизмы с круглыми зубчатыми колёсами.

    Различают плоские и пространственные механизмы. В плоском механизме оси параллельны, а в пространственном пересекаются или перекрещиваются. В плоском механизме колёса имеют цилиндрическую форму, в пространственном – коническую (если оси пересекаются).

    В серийном и мелкосерийном производстве проектируют оснастку с использованием универсальных зажимных механизмов (ЗМ) или специальных однозвенных с ручным приводом. В тех случаях, когда требуются большие силы закрепления заготовок, целесообразно применять механизированные зажимы.

    В механизированном производстве используют зажимные механизмы, у которых прихваты автоматически отводятся в сторону. Этим обеспечивается свободный доступ к установочным элементам для очистки их от стружки и удобство переустановки заготовок.

    Рычажные однозвенные механизмы с управлением от гидро- или пневмопривода используют при закреплении, как правило, одной корпусной или крупной заготовки. В таких случаях прихват отодвигают или поворачивают вручную. Однако лучше использовать дополнительное звено для отвода прихвата из зоны загрузки заготовки.

    Зажимные устройства Г-образного типа применяют чаще для закрепления корпусных заготовок сверху. Для поворота прихвата во время закрепления предусматривают винтовой паз с прямолинейным участком.

    Рис. 3.1.

    Комбинированные зажимные механизмы используют для закрепления широкой номенклатуры заготовок: корпусов, фланцев, колец, валов, планок и пр.

    Рассмотрим некоторые типовые конструкции зажимных механизмов.

    Рычажные зажимные механизмы отличаются простотой конструкции (рис. 3.1), значительным выигрышем в силе (или в перемещении), постоянством силы зажима, возможностью закрепления заготовки в труднодоступном месте, удобством эксплуатации, надежностью.

    Рычажные механизмы используют в виде прихватов (прижимных планок) или в качестве усилителей силовых приводов. Для облегчения установки заготовок рычажные механизмы выполняют поворотными, откидными и передвижными. По конструкции (рис. 3.2) они могут быть прямолинейными отодвигаемыми (рис. 3.2, а) и поворотными (рис. 3.2, б), откидными (рис. 3.2, в) с качающейся опорой, изогнутыми (рис. 3.2, г) и комбинированными (рис. 3.2,

    Рис. 3.2.

    На рис. 3.3 приведены универсальные рычажные ЗМ с ручным винтовым приводом, используемые в индивидуальном и мелкосерийном производствах. Они просты по конструкции и надежны.

    Опорный винт 1 устанавливают в Т-образный паз стола и крепят гайкой 5. Положение зажимного прихвата 3 по высоте регулируют винтом 7 с опорной пятой 6, и пружиной 4. Сила закрепления на заготовку передается от гайки 2 через прихват 3 (рис. 3.3, а).

    В ЗМ (рис. 3.3, б) заготовку 5 крепят прихватом 4, а заготовку 6 прихватом 7. Сила закрепления передается от винта 9 на прихват 4 через плунжер 2 и регулировочный винт /; на прихват 7 - через закрепленную в нем гайку. При изменении толщины заготовок положение осей 3, 8 легко регулируется.


    Рис. 3.3.

    В ЗМ (рис. 3.3, в) корпус 4 зажимного механизма крепят к столу гайкой 3 посредством втулки 5 с резьбовым отверстием. Положение изогнутого прихвата 1 но высоте регулируют опорой 6 и винтом 7. Прихват 1 имеет люфт между конической шайбой, установленной иод головкой винта 7, и шайбой, которая находится выше стопорного кольца 2.

    В конструкции дугообразный прихват 1 во время крепления заготовки гайкой 3 поворачивается на оси 2. Винт 4 в данной конструкции не крепится к столу станка, а свободно передвигается в Т-образном пазу (рис. 3.3, г).

    Используемые в зажимных механизмах винты развивают на торце силу Р, которая может быть рассчитана по формуле

    где Р - усилие рабочего, приложенное к концу рукоятки; L - длина рукоятки; г ср - средний радиус резьбы; а - угол подъема резьбы; ср - угол трения в резьбе.

    Момент, развиваемый на рукоятке (ключе), для получения заданной силы Р

    где М, р - момент трения на опорном торце гайки или винта:

    где /- коэффициент трения скольжения: при закреплении / = 0,16...0,21, при раскреплении / = 0,24...0,30; D H - наружный диаметр трущейся поверхности винта или гайки; с/ в - диаметр резьбы винта.

    Приняв a = 2°30" (для резьбы от М8 до М42 угол а меняется от 3°10" до 1°57"), ф = 10°30", г ср = 0,45с/, Д, = 1,7с/, d B = d и/= 0,15, получим приближенную формулу для момента на торце гайки М гр = 0,2dP.

    Для винтов с плоским торцом М т р = 0,1с1Р+ н, а для винтов со сферическим торцом М Л р ~ 0,1 с1Р.

    На рис. 3.4 приведены другие рычажные зажимные механизмы. Корпус 3 универсального зажимного механизма с винтовым приводом (рис. 3.4, а) крепят к столу станка винтом / и гайкой 4. Прихват б во время крепления заготовки поворачивают на оси 7 винтом 5 по часовой стрелке. Положение прихвата б с корпусом 3 легко регулируется относительно неподвижного вкладыша 2.


    Рис. 3.4.

    Специальный рычажный зажимной механизм с дополнительным звеном и пневмоприводом (рис. 3.4, б) используют в механизированном производстве для автоматического отвода прихвата из зоны загрузки заготовок. Во время раскрепления заготовки / шток б перемещается вниз, при этом прихват 2 поворачивается на оси 4. Последняя совместно с серьгой 5 поворачивается на оси 3 и занимает положение, показанное штриховой линией. Прихват 2 отводится из зоны загрузки заготовок.

    Клиновые зажимные механизмы бывают с односкосым клином и клиноплунжерные с одним плунжером (без роликов или с роликами). Клиновые зажимные механизмы отличаются простотой конструкции, удобством наладки и эксплуатации, способностью к самоторможению, постоянством силы зажима.

    Для надежного закрепления заготовки 2 в приспособлении 1 (рис. 3.5, а) клин 4 должен быть самотормозяшимся за счет угла а скоса. Клиновые зажимы применяют самостоятельно или в качестве промежуточного звена в сложных зажимных системах. Они позволяют увеличивать и изменять направление передаваемой силы Q.

    На рис. 3.5, б показан стандартизованный клиновой зажимной механизм с ручным приводом для закрепления заготовки на столе станка. Зажим заготовки осуществляется клином /, перемещающимся относительно корпуса 4. Положение подвижной части клинового зажима фиксируется болтом 2 , гайкой 3 и шайбой; неподвижной части - болтом б, гайкой 5 и шайбой 7.


    Рис. 3.5. Схема (а) и конструкция (в) клинового зажимного механизма

    Усилие зажима, развиваемое клиновым механизмом, рассчитывают но формуле

    где ср и ф| - углы трения соответственно на наклонной и горизонтальной поверхностях клина.

    Рис. 3.6.

    В практике машиностроительного производства чаще используют оснастку с наличием роликов в клиновых зажимных механизмах. Такие зажимные механизмы позволяют уменьшить вдвое потери на трение.

    Расчет силы закрепления (рис. 3.6) производится по формуле, аналогичной формуле для расчета клинового механизма, работающего при условии трения скольжения на контактирующих поверхностях. При этом углы трения скольжения ф и ф, заменяем на углы трения качения ф |1р и ф пр1:

    Чтобы определить соотношение коэффициентов трения при скольжении и

    качении, рассмотрим равновесие нижнего ролика механизма: F l - = T - .

    Так как Т = Wf F i =Wtgi р цр1 и / = tgcp, получим tg(p llpl = tg

    верхнего ролика вывод формулы аналогичен.

    В конструкциях клиновых зажимных механизмов используют стандартные ролики и оси, у которых D = 22...26 мм, a d = 10... 12 мм. Если принять tg(p =0,1; d/D = 0,5, тогда коэффициент трения качения будет / к = tg

    0,1 0,5 = 0,05 =0,05.


    Рис. 3.

    На рис. 3.7 приведены схемы клиноплунжерных зажимных механизмов с двухонорным плунжером без ролика (рис. 3.7, а); с двухопорным плунжером и роликом (рис. 3.7, (5); с одноопорным плунжером и тремя роликами

    (рис. 3.7, в); с двумя одноопорными (консольными) плунжерами и роликами (рис. 3.7, г). Такие зажимные механизмы надежны в работе, просты в изготовлении и могут обладать свойством самоторможения при определенных углах скоса клина.

    На рис. 3.8 показан зажимной механизм, применяемый в автоматизированном производстве. Заготовку 5 устанавливают на палец б и крепят прихватом 3. Сила закрепления на заготовку передается от штока 8 гидроцилиндра 7 через клин 9, ролик 10 и плунжер 4. Отвод прихвата из зоны загрузки во время съема и установки заготовки осуществляет рычаг 1, который поворачивает на оси 11 выступ 12. Прихват 3 легко перемешается от рычага 1 или пружины 2, так как в конструкции оси 13 предусмотрены прямоугольные сухари 14, легко перемещаемые в пазах прихвата.


    Рис. 3.8.

    Для увеличения силы на штоке пневмопривода или другого силового привода применяют шарнирно-рычажные механизмы. Они являются промежуточным звеном, связывающим силовой привод с прихватом, и применяются в том случае, когда для крепления заготовки требуется большая сила.

    По конструкции их делят на однорычажные, двухрычажные одностороннего действия и двухрычажные двустороннего действия.

    На рис. 3.9, а показана схема шарнирно-рычажного механизма (усилителя) одностороннего действия в виде наклонного рычага 5 и ролика 3, соединенного осью 4 с рычагом 5 и штоком 2 пневмоцилиндра 1. Исходная сила Р, развиваемая пневмоцилиндром, через шток 2, ролик 3 и ось 4 передается на рычаг 5.

    При этом нижний конец рычага 5 перемещается вправо, а его верхний конец поворачивает прихват 7 вокруг неподвижной опоры б и закрепляет заготовку силой Q. Значение последней зависит от силы W и соотношения плеч прихвата 7.

    Силу W для однорычажного шарнирного механизма (усилителя) без плунжера определяют по уравнению

    Сила IV , развиваемая двухрычажным шарнирным механизмом (усилителем) (рис. 3.9, б), равна

    Силу If" 2 , развиваемую двухрычажным шарнирно-плунжерным механизмом одностороннего действия (рис. 3.9, в), определяют по уравнению

    В приведенных формулах: Р- исходная сила на штоке механизированного привода, Н; a - угол положения наклонного звена (рычага); р - дополнительный угол, которым учитываются потери на трение в шарнирах

    ^p = arcsin/^П;/- коэффициент трения скольжения на оси ролика и в шарнирах рычагов (f ~ 0,1...0,2); (/-диаметр осей шарниров и ролика, мм; D - наружный диаметр опорного ролика, мм; L - расстояние между осями рычага, мм; ф[ - угол трения скольжения на осях шарниров; ф 11р - угол трения

    качения на опоре ролика; tgф пp =tgф-^; tgф пp 2 - приведенный коэффициент

    жере; tgф np 2 =tgф-; / - расстояние между осью шарнира и серединой на-

    трения, учитывающий потери на трение в консольном (перекошенном) плун- 3/ , правляющей втулки плунжера (рис. 3.9, в), мм; а - длина направляющей втулки плунжера, мм.


    Рис. 3.9.

    действия

    Однорычажные шарнирные зажимные механизмы применяют в тех случаях, когда требуются большие силы закрепления заготовки. Это объясняется тем, что во время крепления заготовки угол а наклонного рычага уменьшается и сила зажима увеличивается. Так, при угле а = 10° сила W на верхнем конце наклонного звена 3 (см. рис. 3.9, а) составляет JV ~ 3,5Р, а при а = 3° W~ 1 IP, где Р - сила на штоке 8 пневмоцилиндра.

    На рис. 3.10, а приведен пример конструктивного исполнения такого механизма. Заготовку / крепят прихватом 2. Сила закрепления на прихват передается от штока 8 пневмоцилиндра через ролик 6 и регулируемое по длине наклонное звено 4, состоящее из вилки 5 и серьги 3. Для предотвращения изгиба штока 8 для ролика предусмотрена опорная планка 7.

    В зажимном механизме (рис. 3.10, б) пневмоцилиндр расположен внутри корпуса 1 приспособления, к которому винтами прикреплен корпус 2 зажимного


    Рис. 3.10.

    механизма. Во время закрепления заготовки шток 3 пневмоцилиндра с роликом 7 перемещаются вверх, а прихват 5 со звеном б поворачивается на оси 4. При раскреплении заготовки прихват 5 занимает положение, показанное штриховыми линиями, не мешая смене заготовки.

    1. Назначение механизма и их классификация

    Механизм - устройство, предназначенное для выполнения определенных и целесообразных движений.

    Классификация:

    По назначению:

    М-мы двигателей;- передаточные механизмы;

    Исполнительные м-мы;- м-мы управления, управления и регулирования;- м-мы счета, измерения, взвешивания

    М-мы подачи и сортировки

    По конструктивному признаку:

    Рычажные;- кулачковые- зубчатые- кулисные

    В зависимости от траектории движения звеньев:

    Плоские- пространственные

    Сложные механические системы (машина, автоматы, вычислительные устройства) – сочетания простых механизмов.

    Простой (элементарный) м-зм - м-зм, кот. нельзя разложить на более простые м-змы.

    2.Структура механизмов.

    Любая машина состоит из деталей.

    Деталь - элементарная часть машины, которая выполнена из однородного материала или не может быть разобрана на более простые части (зубчатое колесо, валы, болты).

    Различают детали общего (встречаются в большинстве машин) и специального (встреча-ся в спец-х, особых машинах) назначения.

    Твёрдые тела, составляющие механизм называют звеньями . Звено может состоять из нескольких деталей, соединённых неподвижно.

    Стойка - неподвижное звено.

    Совокупность двух звеньев имеющих относительное движение называют кинематической парой .

    Условия существования к.п.:

    1. Наличие двух звеньев.

    2. Непосредственный контакт.

    3. Возможность относительного движения.

    Коромысло – звено, совершающее вращательное движение.

    Бывают вращательные, поступательные к.п.. Звенья могут соприкасаться между собой в точке, по линии или по поверхности (образуя к.п.). К.п. накладывают ограничения на относительное движение звеньев. Эти ограничения называют связями .

    3.Классификация кинематических пар.

    К.П. - совокупность 2-х звеньев, имеющих относит. движ.

    Услов.сущ.к.п.:-наличие 2 звеньев

    Непосредств.контакт

    Возмож.относ.движ.

    Звенья могут соприкос.между собой, образ.к.п.в точке, по линии, по плоскости.

    К.п. наклад.огранич.на относит.движение звеньев. Эти огранич.назыв.связями.

    К.п. классифиц.по:

    1.по виду элементов соприкосновения

    если элем.соприкоснов.-поверхность,то к.п.низшая.

    если контакт звеньев по линии или в точке,то к.п.высшая.

    2.по хар-ру относит.движения звеньев –плоские

    Пространственные

    3.по числу связей, накладыв.на относит.движ.звеньев:1,2,3,4,5 класса

    4.Кинематические цепи .

    Сочетания звеньев вх-х в кин-ую пару наз-т кин-ой цепью. КЦ бывают простые, сложные, замкнутые, разомкнутые. Мех-зм – такая КЦ в кот при заданном движ-ии одного или неск-х ведущих звеньев остальные движ-ся вполне опред-ым образом. Все звенья делятся на 3 группы: 1-Группа ведущих звеньев. З-н движ-я в ведущих звеньях обычно задается. 2-Ведомые звенья. З-н движ-я ведомых звеньев зав-т от з-на движ-я ведущих звеньев. 3-Стойка мех-зма. Плоским мех-ом наз такой мех-зм, звенья кот. движ-ся в одной или неск-х // пл-ях. W=3n-2p 5 -p 4 – степень подвижн-ти плоского мех-зма, где W-число степеней подвижности, должно соотв-ть числу ведущих звеньев, n-число подвиж-х звеньев, p 5 число пар 5-го класса (соотв-о p 4).

    5. Фрикционные передачи(механизмы)

    Передача основана на использовании сил трения

    Преимущества:

    · Простота, безступенч. регулирование перед. числа

    · Плавность бесшумность работы передачи

    · Надёжность соединения

    · При перегрузке происходит проскальзование катков, это предохраняет механизм от поломки

    Недостатки:

    · Большие давления на валы и опоры

    · Износ рабочих поверхностей

    · Непостоянство передаточного числа (из-за проскальзывания катков)

    · Небольшая нагрузочная способность до 20 кВт

    Передачи классифицируют:

    1. По расположению валов

    а) циллиндрическая(оси | |)

    б) оси пересекаются – передача коническая

    в) оси перекрещиваются – передача реечная

    Для повышения нагрузочной способности катки изготовляют клинчатыми

    2. По характеру силы прижатия катков:

    а) с постоянной силой прижатия

    б) с переменной силой прижатия

    В зависимости от передоваемой нагрузки, чтобы обеспечить непосредственный контакт катков сила прижатия автоматически изменяеться.

    3. Передачи делятся на:

    а) с условно-постоянным передаточным числом

    б) с переменным передаточным числом (вариаторы)

    Fтр>F(вн нагр.)

    Qf=kF Q=kF/f – сила нажатия

    к – кооф. запаса сцепления

    f - кооф. трения скольжения

    Передачи с плавнорегулируемым передаточным числом назыв вариаторами

    По конструкции вариаторы разнообразны

    U=x/2, 0

    Условная скорость

    Передача.

    Преимущества:

    Плавное изменение передаточного числа => изменение значения угловой скорости ведомого звена и может быть изменено направление вращения ведомого звена.

    По конструкции: * с непосредственным контактом, * с промежуточным контактом.

    Широко применяется в приборостроении, даже в промышленности.

    6. Ремённые передачи: достоинства, недостатки. Характеристика плоскоремённой передачи.

    Ремённая передача основана на использовании сил трения, состоит из ведущего и ведомого шкивов, ремня, надетого с натяжением.

    «+»: простота конструкции, возможность передачи на большие расстояния: плоский-15м, клиновый-6,смягчает удары, гасит вибрацию,предохраняет то перегрузки.

    «-»: большие давления на валы и опоры по сравнению с зубчатой передачей; непостоянство передаточного числа (из-за проскальзывания);низкая долговечность ремней; необходимость применения натяжных устройств.

    Передачи классифицируют:

    1. По форме профиля ремня

    · Плоскоремённая Клиноремённая

    · Круглоремённая Зубчатая

    2. По скорости вращения

    · Тихоходные

    · Среднескоростные

    · Скоростные

    Плоскоремённая передача

    Применяется при высоких скоростях вращения, при большом расстоянии между валами (до 15 м).

    Виды плоскоременной передачи

    · Открытая

    · Полуперекрёстная

    · Перекрестная

    · Перекрестная

    К основным параметрам относятся:

    α – угол обхвата шкива ремнём (ведущего)

    а – межосевое расстояние

    L – длина ремня

    7.Клиноременная передача, основные параметры. Виды ремней.

    Применяется для передачи мощности на большие или малые расстояния, но может передавать момент до 6 м. Нагрузочная способность клиноременной передачи в 3 раза больше плоской (при одинаковых параметрах). Применяется в электродвигателях. Может состоять от одного до 6 ремней. Число ремней зависит от передаваемой мощности. Большое количество ремней не рекомендуется, так как нагрузка между ремнями распределяется неравномерно. Виды плоских ремней. 1.Резино-тканевые ремни: изготовляют 3 типов: А,Б,В. Ремень состоит из нескольких слоев бельтинга с резинов. Прокладками. Обладает достаточной прочностью, гибкостью, но не рекомендуется применять среди кислот и щелочей.2. Ремни из синтетических материалов. Применяют при скоростях до 100 м/с. Высокая гибкость, износоустойчивость.3. Х/б ремни Применяются в тихоходных передачах.4.Кожаные ремни: большая прочность, гибкость, эластичность, стоимость, поэтому ограничен. применение.5. Шерстяные ремни. Ограничен. применение. Клиноременные ремни. Кордотканевые и кордошнуровые. Выпускают несколько типов, отличающ. друг от друга размерами поперечного сечения: О,А,Б,В,Г,Д,Е. При выборе типа ремня учитывается передаваемая мощность.{Приводные ремни. Должны быть достаточно прочными, долговечными, износоустойчивыми и иметь невысокую стоимость.}

    Весьма разнообразны. Одни из них представляют собой сочетание только твердых тел, другие имеют в своем составе гидравлические, пневматические тела или электрические, магнитные и другие устройства. Соответственно такие механизмы называются гидравлическими, пневматическими, электрическими и т.д.

    С точки зрения их функционального назначения механизмы обычно делятся на следующие виды:

    Механизмы двигателей осуществляют преобразование различных видов энергии в механическую работу (например, механизмы двигателей внутреннего сгорания, паровых машин, электродвигателей, турбин и др.).

    Механизмы преобразователей (генераторов) осуществляют преобразование механической работы в другие виды энергии (например, механизмы насосов, компрессоров, гидроприводов и др.).

    Передаточный механизм (привод) имеет своей задачей передачу движения от двигателя к технологической машине или исполнительному механизму, преобразуя это движение в необходимое для работы данной технологической машины или исполнительного механизма.

    Исполнительный механизм – это механизм, который непосредственно воздействует на обрабатываемую среду или объект. В его задачу входит изменение формы, состояния, положения и свойств обрабатываемой среды или объекта (например, механизмы металлообрабатывающих станков, прессов, конвейеров, прокатных станов, экскаваторов, грузоподъемных машин и др.).

    Механизмами управления, контроля и регулирования называются различные механизмы и устройства для обеспечения и контроля размеров обрабатываемых объектов (например измерительные механизмы по контролю размеров, давления, уровней жидкости; регуляторы, реагирующие на отклонение угловой скорости главного вала машины и устанавливающие заданную скорость этого вала; механизм, регулирующий постоянство расстояния между валками прокатного стана, и т.д.).

    К механизмам подачи транспортировки, питания и сортировки обрабатываемых сред и объектов относятся механизмы винтовых шнеков, скребковых и ковшевых элеваторов для транспортировки и подачи сыпучих материалов, механизмы загрузочных бункеров для штучных заготовок, механизмы сортировки готовой продукции по размерам, весу, конфигурации и т.д.

    Механизмы автоматического счета, взвешивания и упаковки готовой продукции применяются во многих машинах, в основном выпускающих массовую штучную продукцию. Надо иметь в виду, что эти механизмы могут быть и исполнительными механизмами, если они входят в специальные машины, предназначенные для этих целей.

    Данная классификация показывает лишь многообразие функционального применения механизмов, которая может быть еще значительно расширена. Однако для выполнения различных функций часто применяются механизмы, имеющие одинаковое строение, кинематику и динамику. Поэтому для изучения в теории механизмов и машин выделяются механизмы, имеющие общие методы их синтеза и анализа работы, независимо от их функционального предназначения. С этой точки зрения выделяются следующие виды механизмов.